Harringtonine: A more effective antagonist for Omicron variant

[1]  M. Bhattacharya,et al.  Immediate need for next-generation and mutation-proof vaccine to protect against current emerging Omicron sublineages and future SARS-CoV-2 variants: An urgent call for researchers and vaccine companies – Correspondence , 2022, International Journal of Surgery.

[2]  R. Bull,et al.  Evolution of the SARS‐CoV‐2 omicron variants BA.1 to BA.5: Implications for immune escape and transmission , 2022, Reviews in medical virology.

[3]  O. Pybus,et al.  Emergence of SARS-CoV-2 Omicron lineages BA.4 and BA.5 in South Africa , 2022, Nature Medicine.

[4]  K. Dhama,et al.  Challenges of the Omicron (B.1.1.529) Variant and Its Lineages: A Global Perspective , 2022, Chembiochem : a European journal of chemical biology.

[5]  Suresh Kumar,et al.  Omicron (BA.1) and sub‐variants (BA.1.1, BA.2, and BA.3) of SARS‐CoV‐2 spike infectivity and pathogenicity: A comparative sequence and structural‐based computational assessment , 2022, bioRxiv.

[6]  S. Whelan,et al.  SARS-CoV-2 spreads through cell-to-cell transmission , 2021, Proceedings of the National Academy of Sciences.

[7]  A. Telenti,et al.  Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift , 2021, Nature.

[8]  E. Rozners,et al.  Enzymatic Beacons for Specific Sensing of Dilute Nucleic Acid ** , 2021, Chembiochem : a European journal of chemical biology.

[9]  O. Dyer Covid-19: South Africa’s surge in cases deepens alarm over omicron variant , 2021, BMJ.

[10]  Bin Liu,et al.  Azvudine is a thymus-homing anti-SARS-CoV-2 drug effective in treating COVID-19 patients , 2021, Signal Transduction and Targeted Therapy.

[11]  Ashfaq Ahmad,et al.  Omicron N501Y mutation among SARS-CoV-2 lineages: In silico analysis of potent binding to tyrosine kinase and hypothetical repurposed medicine , 2021, Travel Medicine and Infectious Disease.

[12]  Xiawei Wei,et al.  SARS‐CoV‐2 Omicron variant: Characteristics and prevention , 2021, MedComm.

[13]  J. Bai,et al.  Identification of the SARS-CoV-2 Delta variant C22995A using a high-resolution melting curve RT-FRET-PCR , 2021, Emerging microbes & infections.

[14]  D. Wesemann,et al.  Membrane fusion and immune evasion by the spike protein of SARS-CoV-2 Delta variant , 2021, Science.

[15]  O. Schwartz,et al.  The Mechanism and Consequences of SARS-CoV-2 Spike-Mediated Fusion and Syncytia Formation , 2021, Journal of Molecular Biology.

[16]  R. Bull,et al.  Broadly-Neutralizing Antibodies Against Emerging SARS-CoV-2 Variants , 2021, Frontiers in Immunology.

[17]  Yanni Lv,et al.  Targeting and Covalently Immobilizing the EGFR through SNAP-Tag Technology for Screening Drug Leads. , 2021, Analytical chemistry.

[18]  D. Wesemann,et al.  Membrane fusion and immune evasion by the spike protein of SARS-CoV-2 Delta variant , 2021, bioRxiv.

[19]  Catherine M. Brown,et al.  Outbreak of SARS-CoV-2 Infections, Including COVID-19 Vaccine Breakthrough Infections, Associated with Large Public Gatherings — Barnstable County, Massachusetts, July 2021 , 2021, MMWR. Morbidity and mortality weekly report.

[20]  D. Meyerholz,et al.  The TMPRSS2 Inhibitor Nafamostat Reduces SARS-CoV-2 Pulmonary Infection in Mouse Models of COVID-19 , 2021, mBio.

[21]  Mike Mannell,et al.  SARS-CoV-2 B.1.617.2 (Delta) Variant COVID-19 Outbreak Associated with a Gymnastics Facility — Oklahoma, April–May 2021 , 2021, MMWR. Morbidity and mortality weekly report.

[22]  F. Rey,et al.  Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization , 2021, Nature.

[23]  Keda Chen,et al.  Comparison and Analysis of Neutralizing Antibody Levels in Serum after Inoculating with SARS-CoV-2, MERS-CoV, or SARS-CoV Vaccines in Humans , 2021, Vaccines.

[24]  A. Pae,et al.  Platycodin D, a natural component of Platycodon grandiflorum, prevents both lysosome- and TMPRSS2-driven SARS-CoV-2 infection by hindering membrane fusion , 2021, Experimental & molecular medicine.

[25]  Weina Ma,et al.  Advances in cell membrane chromatography. , 2021, Journal of chromatography. A.

[26]  Paul J. Ackerman,et al.  SARS-CoV-2 requires cholesterol for viral entry and pathological syncytia formation , 2020, bioRxiv.

[27]  Jiaxing Zhang,et al.  A novel cell culture system modeling the SARS-CoV-2 life cycle , 2020, bioRxiv.

[28]  Qiuhong Wang,et al.  Circular RNA profiling reveals abundant and diverse circRNAs of SARS-CoV-2, SARS-CoV and MERS-CoV origin , 2020, bioRxiv.

[29]  T. Tripathi,et al.  One year update on the COVID-19 pandemic: Where are we now? , 2020, Acta Tropica.

[30]  V. Thiel,et al.  Coronavirus biology and replication: implications for SARS-CoV-2 , 2020, Nature Reviews Microbiology.

[31]  Peter B Rosenthal,et al.  Receptor binding and priming of the spike protein of SARS-CoV-2 for membrane fusion , 2020, Nature.

[32]  F. Aziz,et al.  Implications of the Novel Corona Virus SARS-CoV-2 on Vascular Surgery Practices , 2020, Journal of Vascular Surgery.

[33]  Xinwen Chen,et al.  An adenovirus-vectored COVID-19 vaccine confers protection from SARS-COV-2 challenge in rhesus macaques , 2020, Nature Communications.

[34]  S. Rawson,et al.  Distinct conformational states of SARS-CoV-2 spike protein , 2020, Science.

[35]  Chuan-Li Lu,et al.  A review for natural polysaccharides with anti-pulmonary fibrosis properties, which may benefit to patients infected by 2019-nCoV , 2020, Carbohydrate Polymers.

[36]  anonymous,et al.  Remdesivir , 2020, Reactions Weekly.

[37]  Marc C. Johnson,et al.  Optimized Pseudotyping Conditions for the SARS-COV-2 Spike Glycoprotein , 2020, Journal of Virology.

[38]  Shaun Rawson,et al.  Distinct conformational states of SARS-CoV-2 spike protein , 2020, Science.

[39]  N. Dixit,et al.  Targeting TMPRSS2 and Cathepsin B/L together may be synergistic against SARS-CoV-2 infection , 2020, PLoS Comput. Biol..

[40]  M. Diamond,et al.  TMPRSS2 and TMPRSS4 mediate SARS-CoV-2 infection of human small intestinal enterocytes , 2020, bioRxiv.

[41]  K. Yuen,et al.  Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2 , 2020, Cell.

[42]  Xuhui Huang,et al.  Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro , 2020, Antiviral Research.

[43]  Linqi Zhang,et al.  Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor , 2020, Nature.

[44]  Yan Liu,et al.  Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV , 2020, Nature Communications.

[45]  K. Shi,et al.  Structural basis of receptor recognition by SARS-CoV-2 , 2020, Nature.

[46]  T. Singhal A Review of Coronavirus Disease-2019 (COVID-19) , 2020, The Indian Journal of Pediatrics.

[47]  G. Herrler,et al.  SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor , 2020, Cell.

[48]  Gengfu Xiao,et al.  Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro , 2020, Cell Research.

[49]  Kai Zhao,et al.  A pneumonia outbreak associated with a new coronavirus of probable bat origin , 2020, Nature.

[50]  A. Walls,et al.  Structural basis for human coronavirus attachment to sialic acid receptors , 2019, Nature Structural & Molecular Biology.

[51]  Daniel Wrapp,et al.  Stabilized coronavirus spikes are resistant to conformational changes induced by receptor recognition or proteolysis , 2018, Scientific Reports.

[52]  Langchong He,et al.  Overview of the detection methods for equilibrium dissociation constant KD of drug-receptor interaction , 2018, Journal of pharmaceutical analysis.

[53]  Weibo Cai,et al.  NanoLuc: A Small Luciferase Is Brightening Up the Field of Bioluminescence. , 2016, Bioconjugate chemistry.

[54]  M. Takeda,et al.  Efficient Multiplication of Human Metapneumovirus in Vero Cells Expressing the Transmembrane Serine Protease TMPRSS2 , 2008, Journal of Virology.

[55]  D. S. Hage,et al.  Characterization of thyroxine-albumin binding using high-performance affinity chromatography. II. Comparison of the binding of thyroxine, triiodothyronines and related compounds at the warfarin and indole sites of human serum albumin. , 1995, Journal of chromatography. B, Biomedical applications.

[56]  D. S. Hage,et al.  Characterization of thyroxine-albumin binding using high-performance affinity chromatography. I. Interactions at the warfarin and indole sites of albumin. , 1992, Journal of chromatography.

[57]  D. Weisleder,et al.  Structures of harringtonine, isoharringtonine, and homoharringtonine. , 1970, Tetrahedron letters.