Chemical evolution using smooth particle hydrodynamical cosmological simulations – I. Implementation, tests and first results

We develop a model to implement metal enrichment in a cosmological context based on the hydrodynamical AP3MSPH code described by Tissera, Lambas and Abadi (1997). The star formation model is based on the Schmidt law and has been modified in order to describe the transformation of gas into stars in more detail. The enrichment of the interstellar medium due to supernovae I and II explosions is taken into account by assuming a Salpeter Initial Mass Function and different nucleosynthesis models. The different chemical elements are mixed within the gaseous medium according to the Smooth Particle Hydrodynamics technique. Gas particles can be enriched by different neighbouring particles at the same time. We present tests of the code that assess the effects of resolution and model parameters on the results. We show that the main effect of low numerical resolution is to produce a more effective mixing of elements, resulting in abundance relations with less dispersion. We have performed cosmological simulations in a standard Cold Dark Matter scenario and we present results of the analysis of the star formation and chemical properties of the interstellar medium and stellar population of the simulated galactic objects. We show that these systems reproduce abundance ratios for primary and secondary elements of the interstellar medium, and the correlation between the (O/H) abundance and the gas fraction of galaxies. We find that star formation efficiency, the relative rate of supernovae II to supernovae I and life-time of binary systems as well as the stellar nucleosynthesis

[1]  P. Tissera Analysis of Star Formation in Galaxy-like Objects , 2000 .

[2]  V. Springel Modelling star formation and feedback in simulations of interacting galaxies , 2000 .

[3]  M. Steinmetz,et al.  Dark Halo and Disk Galaxy Scaling Laws in Hierarchical Universes , 2000, astro-ph/0001003.

[4]  Puebla,et al.  The evolution of superbubbles and the detection of Lyα in star-forming galaxies , 1999, astro-ph/9905324.

[5]  Cambridge,et al.  ∼ 4 and the Evolution of the Uv Luminosity Density at High Redshift , 2022 .

[6]  P. Tissera,et al.  Disk Formation in Hierarchical Hydrodynamical Simulations:A Way Out of the Angular Momentum Catastrophe , 1998, astro-ph/9809312.

[7]  P. Tissera,et al.  Dark Matter Halo Structure in CDM Hydrodynamical Simulations , 1998, astro-ph/9801116.

[8]  C. Breuck,et al.  YOUNG UNIVERSE: GALAXY FORMATION AND EVOLUTION AT INTERMEDIATE AND HIGH REDSHIFT , 1998 .

[9]  Bernard E. J. Pagel,et al.  Nucleosynthesis and chemical evolution of galaxies , 1997 .

[10]  Linda J. Smith,et al.  The Metallicity of High-Redshift Galaxies: The Abundance of Zinc in 34 Damped Lyα Systems from z = 0.7 to 3.4 , 1997, astro-ph/9704102.

[11]  D. Lambas,et al.  Analysis of galaxy formation with hydrodynamics , 1997 .

[12]  C. Theis,et al.  Modeling the Evolution of Disk Galaxies. I. The Chemodynamical Method and the Galaxy Model , 1997 .

[13]  C. Chiappini,et al.  The Chemical Evolution of the Galaxy: The Two-Infall Model , 1996, astro-ph/9609199.

[14]  Id Howarth,et al.  From Stars to Galaxies: the Impact of Stellar Physics on Galaxy Evolution (eds C Leitherer, U Fritze-von Alvensleben & J Huchra) , 1997 .

[15]  E. Skillman,et al.  Elemental Abundance Variations and Chemical Enrichment from Massive Stars in Starbursts. II. NGC 1569 , 1996, astro-ph/9706235.

[16]  L. Hernquist,et al.  Transformations of Galaxies. II. Gasdynamics in Merging Disk Galaxies: Addendum , 1996 .

[17]  A. Fruchter,et al.  HIGH-REDSHIFT GALAXIES IN THE HUBBLE DEEP FIELD : COLOUR SELECTION AND STAR FORMATION HISTORY TO Z 4 , 1996, astro-ph/9607172.

[18]  L. Cowie,et al.  New Insight on Galaxy Formation and Evolution from Keck Spectroscopy of the Hawaii Deep Fields , 1996, astro-ph/9606079.

[19]  Limin Lu,et al.  Abundances at High Redshifts: The Chemical Enrichment History of Damped Lyα Galaxies , 1996, astro-ph/9606044.

[20]  L. Hernquist,et al.  Gasdynamics and starbursts in major mergers , 1995, astro-ph/9512099.

[21]  Matthew Colless,et al.  Autofib Redshift Survey — I. Evolution of the galaxy luminosity function , 1995, astro-ph/9512057.

[22]  S. Courteau,et al.  Evidence for Secular Evolution in Late-Type Spirals , 1995, astro-ph/9512026.

[23]  R. Kennicutt,et al.  The Composition Gradient in M101 Revisited. I. H II Region Spectra and Excitation Properties , 1996 .

[24]  B. Poggianti,et al.  FROM STARS TO GALAXIES: THE IMPACT OF STELLAR PHYSICS ON GALAXY EVOLUTION , 1996 .

[25]  C. Leitherer,et al.  From stars to galaxies : the impact of stellar physics on galaxy evolution : conference held at Porto Elounda Mare, Crete (Greece), 9-13 October 1995 , 1996 .

[26]  B. Guiderdoni,et al.  The interplay between massive star formation, the ISM and galaxy evolution : proceedings of the 11th IAP Astrophysics Meeting, July 3-8, 1995, Institut d'Astrophysique de Paris , 1996 .

[27]  S. Woosley,et al.  The Evolution and Explosion of Massive Stars. II. Explosive Hydrodynamics and Nucleosynthesis , 1995 .

[28]  Piero Madau,et al.  Radiative transfer in a clumpy universe: The colors of high-redshift galaxies , 1995 .

[29]  Matthias Mueller The formation of disc galaxies in a cosmological context: structure and kinematics , 1994, astro-ph/9407066.

[30]  E.Terlevich,et al.  The evolution of C/O in dwarf galaxies from Hubble Space Telescope FOS observations , 1994, astro-ph/9411011.

[31]  S. White,et al.  Simulations of dissipative galaxy formation in hierarchically clustering universes – II. Dynamics of the baryonic component in galactic haloes , 1994 .

[32]  A. Evrard,et al.  A Simulation of the Intracluster Medium With Feedback from Cluster Galaxies , 1993, astro-ph/9309050.

[33]  Michel Casse,et al.  Origin and evolution of the elements , 1993 .

[34]  N. Grevesse,et al.  In: Origin and Evolution of the elements , 1993 .

[35]  Donald Hamilton,et al.  Deep imaging of high redshift QSO fields below the Lyman limit. I - The field of Q0000-263 and galaxies at Z = 3.4 , 1992 .

[36]  H. M. P. Couchman,et al.  Simulating the formation of a cluster of galaxies , 1992 .

[37]  G. Hensler,et al.  The collapse of our Galaxy and the formation of the galactic disk , 1992 .

[38]  Neal Katz,et al.  Dissipational galaxy formation. II - Effects of star formation , 1992 .

[39]  F. Ferrini,et al.  Evolution of spiral galaxies. I - Halo-disk connection for the evolution of the solar neighborhood , 1992 .

[40]  P. Andre',et al.  An observational connection between circumstellar disk mass and molecular outflows , 1991 .

[41]  S. Bergh Star clusters in the clouds of Magellan , 1991 .

[42]  P. François,et al.  Galactic chemical evolution: abundance gradients of individual elements , 1989 .

[43]  R. Davies,et al.  Spectrophotometric and neutral hydrogen observations of Michigan 160 , 1988 .

[44]  S. Faber,et al.  Contraction of Dark Matter Galactic Halos Due to Baryonic Infall , 1986 .

[45]  J. Silk,et al.  Dwarf galaxies, cold dark matter, and biased galaxy formation , 1986 .

[46]  J. Audouze Nucleosynthesis and Chemical Evolution of Galaxies , 1983 .

[47]  H. Corwin UBV photoelectric photometry and photometric parameters for 40 galaxies , 1980 .

[48]  R. Larson Models for the Formation of Disc Galaxies , 1976 .

[49]  R. Larson Models for the Formation of Elliptical Galaxies , 1975 .

[50]  R. McCray,et al.  Heating and Ionization of HI Regions , 1972 .

[51]  M. Schmidt The Rate of Star Formation. II. The Rate of Formation of Stars of Different Mass. , 1963 .

[52]  S. van den Bergh,et al.  The frequency of stars with different metal abundances. , 1962 .