A Weak Galerkin Finite Element Method for Singularly Perturbed Convection-Diffusion-Reaction Problems
暂无分享,去创建一个
Shangyou Zhang | Runchang Lin | Peng Zhu | Xiu Ye | Shangyou Zhang | X. Ye | P. Zhu | R. Lin
[1] Rüdiger Verfürth,et al. A Posteriori Error Estimation Techniques for Finite Element Methods , 2013 .
[2] W. H. Reed,et al. Triangular mesh methods for the neutron transport equation , 1973 .
[3] A. Ern,et al. Mathematical Aspects of Discontinuous Galerkin Methods , 2011 .
[4] Blanca Ayuso de Dios,et al. Discontinuous Galerkin Methods for Advection-Diffusion-Reaction Problems , 2009, SIAM J. Numer. Anal..
[5] Lin Mu,et al. A new weak Galerkin finite element method for the Helmholtz equation , 2015 .
[6] J. Douglas,et al. Interior Penalty Procedures for Elliptic and Parabolic Galerkin Methods , 1976 .
[7] Friedhelm Schieweck,et al. ON THE ROLE OF BOUNDARY CONDITIONS FOR CIP STABILIZATION OF HIGHER ORDER FINITE ELEMENTS , 2008 .
[8] Roger Temam,et al. On the numerical approximations of stiff convection–diffusion equations in a circle , 2014, Numerische Mathematik.
[9] Giancarlo Sangalli,et al. Analysis of a Multiscale Discontinuous Galerkin Method for Convection-Diffusion Problems , 2006, SIAM J. Numer. Anal..
[10] G. I. SHISHKIN,et al. Grid approximation of singularly perturbed elliptic equations in case of limit zero-order equations degenerating at the boundary , 1990 .
[11] Shangyou Zhang,et al. A Weak Galerkin Finite Element Method for the Maxwell Equations , 2013, Journal of Scientific Computing.
[12] J. Nitsche. Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .
[13] Alexandre Ern,et al. A Discontinuous-Skeletal Method for Advection-Diffusion-Reaction on General Meshes , 2015, SIAM J. Numer. Anal..
[14] Paul Houston,et al. Discontinuous hp-Finite Element Methods for Advection-Diffusion-Reaction Problems , 2001, SIAM J. Numer. Anal..
[15] Thomas J. R. Hughes,et al. A multiscale discontinuous Galerkin method with the computational structure of a continuous Galerkin method , 2006 .
[16] Junping Wang,et al. A new weak Galerkin finite element method for elliptic interface problems , 2016, J. Comput. Phys..
[17] H. Reinhardt. A-Posteriori Error Estimates and Adaptive Finite Element Computations for Singularly Perturbed one Space Dimensional Parabolic Equations , 1981 .
[18] Johnny Guzmán,et al. Local analysis of discontinuous Galerkin methods applied to singularly perturbed problems , 2006, J. Num. Math..
[19] H. Roos,et al. Robust Numerical Methods for Singularly Perturbed Differential Equations-Supplements , 2022, ArXiv.
[20] YE JUNPINGWANGANDXIU. A WEAK GALERKIN MIXED FINITE ELEMENT METHOD FOR SECOND ORDER ELLIPTIC PROBLEMS , 2014 .
[21] Lin Mu,et al. Weak Galerkin Finite Element Methods for Second-Order Elliptic Problems on Polytopal Meshes , 2012 .
[22] Douglas N. Arnold,et al. Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..
[23] Béatrice Rivière,et al. Discontinuous Galerkin methods for solving elliptic and parabolic equations - theory and implementation , 2008, Frontiers in applied mathematics.
[24] Torsten Linss,et al. Layer-adapted meshes for reaction-convection-diffusion problems , 2010 .
[25] Junping Wang,et al. A weak Galerkin finite element method for second-order elliptic problems , 2011, J. Comput. Appl. Math..
[26] Wenbin Chen,et al. Minimal degree H(curl) and H(div) conforming finite elements on polytopal meshes , 2015, Math. Comput..
[27] Carl de Boor,et al. Good approximation by splines with variable knots + , 2011 .
[28] M. Wheeler. An Elliptic Collocation-Finite Element Method with Interior Penalties , 1978 .
[29] T. Hughes,et al. Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .
[30] J. Hesthaven,et al. Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .
[31] J. Oden,et al. A discontinuous hp finite element method for convection—diffusion problems , 1999 .
[32] Gang Chen,et al. A robust WG finite element method for convection-diffusion-reaction equations , 2017, J. Comput. Appl. Math..
[33] I. Babuska. The Finite Element Method with Penalty , 1973 .
[34] T. Hughes,et al. MULTI-DIMENSIONAL UPWIND SCHEME WITH NO CROSSWIND DIFFUSION. , 1979 .
[35] Junping Wang,et al. A weak Galerkin finite element method for the stokes equations , 2013, Adv. Comput. Math..
[36] Claes Johnson. Numerical solution of partial differential equations by the finite element method , 1988 .
[37] I. Oikawa. Hybridized discontinuous Galerkin method for convection–diffusion problems , 2013, 1310.8458.