A Weak Galerkin Finite Element Method for Singularly Perturbed Convection-Diffusion-Reaction Problems

In this article, a new weak Galerkin finite element method is introduced to solve convection-diffusion--reaction equations in the convection dominated regime. Our method is highly flexible by allow...

[1]  Rüdiger Verfürth,et al.  A Posteriori Error Estimation Techniques for Finite Element Methods , 2013 .

[2]  W. H. Reed,et al.  Triangular mesh methods for the neutron transport equation , 1973 .

[3]  A. Ern,et al.  Mathematical Aspects of Discontinuous Galerkin Methods , 2011 .

[4]  Blanca Ayuso de Dios,et al.  Discontinuous Galerkin Methods for Advection-Diffusion-Reaction Problems , 2009, SIAM J. Numer. Anal..

[5]  Lin Mu,et al.  A new weak Galerkin finite element method for the Helmholtz equation , 2015 .

[6]  J. Douglas,et al.  Interior Penalty Procedures for Elliptic and Parabolic Galerkin Methods , 1976 .

[7]  Friedhelm Schieweck,et al.  ON THE ROLE OF BOUNDARY CONDITIONS FOR CIP STABILIZATION OF HIGHER ORDER FINITE ELEMENTS , 2008 .

[8]  Roger Temam,et al.  On the numerical approximations of stiff convection–diffusion equations in a circle , 2014, Numerische Mathematik.

[9]  Giancarlo Sangalli,et al.  Analysis of a Multiscale Discontinuous Galerkin Method for Convection-Diffusion Problems , 2006, SIAM J. Numer. Anal..

[10]  G. I. SHISHKIN,et al.  Grid approximation of singularly perturbed elliptic equations in case of limit zero-order equations degenerating at the boundary , 1990 .

[11]  Shangyou Zhang,et al.  A Weak Galerkin Finite Element Method for the Maxwell Equations , 2013, Journal of Scientific Computing.

[12]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[13]  Alexandre Ern,et al.  A Discontinuous-Skeletal Method for Advection-Diffusion-Reaction on General Meshes , 2015, SIAM J. Numer. Anal..

[14]  Paul Houston,et al.  Discontinuous hp-Finite Element Methods for Advection-Diffusion-Reaction Problems , 2001, SIAM J. Numer. Anal..

[15]  Thomas J. R. Hughes,et al.  A multiscale discontinuous Galerkin method with the computational structure of a continuous Galerkin method , 2006 .

[16]  Junping Wang,et al.  A new weak Galerkin finite element method for elliptic interface problems , 2016, J. Comput. Phys..

[17]  H. Reinhardt A-Posteriori Error Estimates and Adaptive Finite Element Computations for Singularly Perturbed one Space Dimensional Parabolic Equations , 1981 .

[18]  Johnny Guzmán,et al.  Local analysis of discontinuous Galerkin methods applied to singularly perturbed problems , 2006, J. Num. Math..

[19]  H. Roos,et al.  Robust Numerical Methods for Singularly Perturbed Differential Equations-Supplements , 2022, ArXiv.

[20]  YE JUNPINGWANGANDXIU A WEAK GALERKIN MIXED FINITE ELEMENT METHOD FOR SECOND ORDER ELLIPTIC PROBLEMS , 2014 .

[21]  Lin Mu,et al.  Weak Galerkin Finite Element Methods for Second-Order Elliptic Problems on Polytopal Meshes , 2012 .

[22]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[23]  Béatrice Rivière,et al.  Discontinuous Galerkin methods for solving elliptic and parabolic equations - theory and implementation , 2008, Frontiers in applied mathematics.

[24]  Torsten Linss,et al.  Layer-adapted meshes for reaction-convection-diffusion problems , 2010 .

[25]  Junping Wang,et al.  A weak Galerkin finite element method for second-order elliptic problems , 2011, J. Comput. Appl. Math..

[26]  Wenbin Chen,et al.  Minimal degree H(curl) and H(div) conforming finite elements on polytopal meshes , 2015, Math. Comput..

[27]  Carl de Boor,et al.  Good approximation by splines with variable knots + , 2011 .

[28]  M. Wheeler An Elliptic Collocation-Finite Element Method with Interior Penalties , 1978 .

[29]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[30]  J. Hesthaven,et al.  Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .

[31]  J. Oden,et al.  A discontinuous hp finite element method for convection—diffusion problems , 1999 .

[32]  Gang Chen,et al.  A robust WG finite element method for convection-diffusion-reaction equations , 2017, J. Comput. Appl. Math..

[33]  I. Babuska The Finite Element Method with Penalty , 1973 .

[34]  T. Hughes,et al.  MULTI-DIMENSIONAL UPWIND SCHEME WITH NO CROSSWIND DIFFUSION. , 1979 .

[35]  Junping Wang,et al.  A weak Galerkin finite element method for the stokes equations , 2013, Adv. Comput. Math..

[36]  Claes Johnson Numerical solution of partial differential equations by the finite element method , 1988 .

[37]  I. Oikawa Hybridized discontinuous Galerkin method for convection–diffusion problems , 2013, 1310.8458.