Differential Operators on Graphs and Photonic Crystals

Studying classical wave propagation in periodic high contrast photonic and acoustic media naturally leads to the following spectral problem: −Δu=λεu, where ε(x) (the dielectric constant) is a periodic function that assumes a large value ε near a periodic graph Σ in R2 and is equal to 1 otherwise. High contrast regimes lead to appearence of pseudo-differential operators of the Dirichlet-to-Neumann type on graphs. The paper contains a technique of approximating these pseudo-differential spectral problems by much simpler differential ones that can sometimes be resolved analytically. Numerical experiments show amazing agreement between the spectra of the pseudo-differential and differential problems.

[1]  J. Avron,et al.  Adiabatic quantum transport in multiply connected systems , 1988 .

[2]  J. Griffith A free-electron theory of conjugated molecules. Part 1.—Polycyclic hydrocarbons , 1953 .

[3]  C. W. Scherr Free‐Electron Network Model for Conjugated Systems. II. Numerical Calculations , 1953 .

[4]  P. Kuchment,et al.  2d photonic crystals with cubic structure: asymptotic analysis , 1998 .

[5]  C. W. Scherr Free‐Electron Network Model for Conjugated Systems. IV , 1953 .

[6]  Kirchhoff's rule for quantum wires , 1998, math-ph/9806013.

[7]  Kirchhoff's Rule for Quantum Wires. II: The Inverse Problem with Possible Applications to Quantum Computers , 1999, quant-ph/9910053.

[8]  Kazuaki Sakoda,et al.  A Two-Dimensional Photonic Crystal Laser. , 1999 .

[9]  Michael Tinkham,et al.  Introduction to mesoscopic physics , 1997 .

[10]  Contact interactions on graph superlattices , 1995, funct-an/9509001.

[11]  Luck,et al.  Quantum percolation and ballistic conductance on a lattice of wires. , 1992, Physical review. B, Condensed matter.

[12]  K. Ruedenberg,et al.  Free‐Electron Network Model for Conjugated Systems. I. Theory , 1953 .

[13]  Alexander Figotin,et al.  Spectral Properties of Classical Waves in High-Contrast Periodic Media , 1998, SIAM J. Appl. Math..

[14]  J. Combes Spectral Problems in the Theory of Photonic Crystals , 1999 .

[15]  Michel Piché,et al.  Photonic bandgaps in periodic dielectric structures , 1993 .

[16]  Exner Lattice Kronig-Penney models. , 1995, Physical review letters.

[17]  Steven G. Johnson,et al.  Photonic Crystals: Molding the Flow of Light , 1995 .

[18]  R. Carlson Hill's equation for a homogeneous tree , 1997 .

[19]  W. D. Evans,et al.  Neumann laplacians on domains and operators on associated trees , 2000 .

[20]  D. Larkman,et al.  Photonic crystals , 1999, International Conference on Transparent Optical Networks (Cat. No. 99EX350).

[21]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[22]  Yoshimi Saito The limiting equation for Neumann Laplacians on shrinking domains , 2000 .

[23]  Rachel J. Steiner,et al.  The spectral theory of periodic differential equations , 1973 .

[24]  Alexander Figotin,et al.  The Computation of Spectra of Some 2D Photonic Crystals , 1997 .

[25]  Jacob Rubinstein,et al.  Variational Problems¶on Multiply Connected Thin Strips I:¶Basic Estimates and Convergence¶of the Laplacian Spectrum , 2001 .

[26]  J. Griffith,et al.  A free-electron theory of conjugated molecules , 1953, Mathematical Proceedings of the Cambridge Philosophical Society.

[27]  Discrete Schrodinger operators and topology , 1999, math-ph/9903025.

[28]  Alexander Figotin,et al.  Band-Gap Structure of Spectra of Periodic Dielectric and Acoustic Media. I. Scalar Model , 1996, SIAM J. Appl. Math..

[29]  W. D. Evans,et al.  Fractals, trees and the Neumann Laplacian , 1993 .

[30]  P. Kuchment,et al.  An Efficient Finite Element Method for Computing Spectra of Photonic and Acoustic Band-Gap Materials , 1999 .

[31]  R. Carlson Inverse eigenvalue problems on directed graphs , 1999 .

[32]  R. A. SMITH,et al.  Physics of Semiconductors , 1960, Nature.

[33]  P. Kuchment,et al.  Asymptotic methods for thin high-contrast two-dimensional PBG materials , 1999 .

[34]  Christian Joachim,et al.  Atomic and molecular wires , 1997 .

[35]  John B. Pendry,et al.  Photonic Band Structures , 1994 .

[36]  J. Rubinstein,et al.  Asymptotics for thin superconducting rings , 1998 .

[37]  E. Yablonovitch,et al.  Inhibited spontaneous emission in solid-state physics and electronics. , 1987, Physical review letters.

[38]  Mark Freidlin,et al.  Markov Processes and Di+erential Equations: Asymptotic Problems , 1996 .

[39]  J. Rubinstein,et al.  Spectral and variational problems on multiconnected strips , 1997 .

[40]  G. V. Chester,et al.  Solid State Physics , 2000 .

[41]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[42]  P. Hui,et al.  Photonic Band-Gap Materials , 1996 .

[43]  A. Aviram Molecular Electronics Science and Technology , 1989 .

[44]  S. Alexander Superconductivity of networks. A percolation approach to the effects of disorder , 1983 .

[45]  A. Figotin High-Contrast Photonic Crystals , 1999 .

[46]  Peter Kuchment,et al.  Spectral Properties of High Contrast Band-Gap Materials and Operators on Graphs , 1999, Exp. Math..

[47]  John,et al.  Strong localization of photons in certain disordered dielectric superlattices. , 1987, Physical review letters.

[48]  Mark Freidlin,et al.  Diffusion Processes on Graphs and the Averaging Principle , 1993 .

[49]  John Rarity,et al.  MICROCAVITIES AND PHOTONIC BANDGAPS: PHYSICS AND APPLICATIONS , 1996 .

[50]  Alexander Figotin,et al.  Band-Gap Structure of Spectra of Periodic Dielectric and Acoustic Media. II. Two-Dimensional Photonic Crystals , 1996, SIAM J. Appl. Math..

[51]  Peter Kuchment,et al.  Convergence of Spectra of Mesoscopic Systems Collapsing onto a Graph , 2001 .

[52]  Michelle Schatzman,et al.  On the Eigenvalues of the Laplace Operator on a Thin Set with Neumann Boundary Conditions , 1996 .

[53]  G. Papanicolaou,et al.  High-contrast impedance tomography , 1996 .

[54]  J. Haus Photonic Band Structures , 1996 .

[55]  J. Rubinstein,et al.  On multiply connected mesoscopic superconducting structures , 1997 .

[56]  B. Pavlov,et al.  Scattering problems on noncompact graphs , 1988 .

[57]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[58]  R. Carlson Nonclassical Sturm-Liouville problems and Schrodinger operators on radial trees , 2000 .

[59]  D. Dobson An Efficient Method for Band Structure Calculations in 2D Photonic Crystals , 1999 .

[60]  P. Kuchment Floquet Theory for Partial Differential Equations , 1993 .