Nanotube-structured Na2V3O7 as a Cathode Material for Sodium-Ion Batteries with High-rate and Stable Cycle Performances

[1]  V. Pralong,et al.  Redox Activity of Sodium Vanadium Oxides towards Oxidation in Na Ion Batteries , 2018, Materials.

[2]  Xinping Ai,et al.  An O3-type NaNi 0.5 Mn 0.3 Ti 0.2 O 2 compound as new cathode material for room-temperature sodium-ion batteries , 2016 .

[3]  G. Cui,et al.  Boron Substituted Na3V2(P1 −xBxO4)3 Cathode Materials with Enhanced Performance for Sodium‐Ion Batteries , 2016, Advanced science.

[4]  Shinichi Komaba,et al.  Research development on sodium-ion batteries. , 2014, Chemical reviews.

[5]  Shin-ichi Nishimura,et al.  A 3.8-V earth-abundant sodium battery electrode , 2014, Nature Communications.

[6]  Sanjay Kumar,et al.  Adoption of smart grid technologies: An analysis of interactions among barriers , 2014 .

[7]  Hiroaki Yoshida,et al.  NaFe0.5Co0.5O2 as high energy and power positive electrode for Na-ion batteries☆ , 2013 .

[8]  Gerbrand Ceder,et al.  Sidorenkite (Na3MnPO4CO3), a New Intercalation Cathode Material for Na-Ion Batteries , 2013 .

[9]  Dong-Hwa Seo,et al.  A combined first principles and experimental study on Na3V2(PO4)2F3 for rechargeable Na batteries , 2012 .

[10]  Suzanna Long,et al.  Barriers to widespread adoption of electric vehicles: An analysis of consumer attitudes and perceptions , 2012 .

[11]  Gerbrand Ceder,et al.  Electrode Materials for Rechargeable Sodium‐Ion Batteries: Potential Alternatives to Current Lithium‐Ion Batteries , 2012 .

[12]  野口健宏,et al.  Active material for secondary batteries , 2012 .

[13]  Shinichi Komaba,et al.  P2-type Na(x)[Fe(1/2)Mn(1/2)]O2 made from earth-abundant elements for rechargeable Na batteries. , 2012, Nature materials.

[14]  Shinichi Komaba,et al.  Synthesis and electrode performance of carbon coated Na2FePO4F for rechargeable Na batteries , 2011 .

[15]  Anubhav Jain,et al.  Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials , 2011 .

[16]  Stefan Adams,et al.  High power lithium ion battery materials by computational design , 2011 .

[17]  Fujio Izumi,et al.  VESTA: a three-dimensional visualization system for electronic and structural analysis , 2008 .

[18]  F. Izumi,et al.  Three-Dimensional Visualization in Powder Diffraction , 2007 .

[19]  G. Henkelman,et al.  A fast and robust algorithm for Bader decomposition of charge density , 2006 .

[20]  J. Galy,et al.  Vanadium(IV)-oxide nanotubes : Crystal structure of the low-dimensional quantum magnet Na2V3O7 , 1999 .

[21]  Manuel Baumann,et al.  The environmental impact of Li-Ion batteries and the role of key parameters – A review , 2017 .

[22]  M. Nakayama,et al.  Efficient automatic screening for Li ion conductive inorganic oxides with bond valence pathway models and percolation algorithm , 2015 .

[23]  G. Ceder,et al.  Sidorenkite ( Na 3 MnPO 4 CO 3 ) : A New Intercalation Cathode Material for NaIon Batteries , 2013 .

[24]  Huilin Pan,et al.  Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries , 2012 .