Differential Inter-System Biases Estimation and Initial Assessment of Instantaneous Tightly Combined RTK with BDS-3, GPS, and Galileo

Mingkui Wu 1, Wanke Liu 2,3,*, Wang Wang 2 and Xiaohong Zhang 2,3 1 School of Geography and Information Engineering, China University of Geosciences (Wuhan), Wuhan 430074, China; wumk@cug.edu.cn 2 School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China; wangw158@whu.edu.cn (W.W.); xhzhang@sgg.whu.edu.cn (X.Z.) 3 Key Laboratory of Geospace Environment and Geodesy, Ministry of Education, Wuhan University, Wuhan 430079, China * Correspondence: wkliu@sgg.whu.edu.cn

[1]  Peter Teunissen,et al.  Characterization of between-receiver GPS-Galileo inter-system biases and their effect on mixed ambiguity resolution , 2013, GPS Solutions.

[2]  Robert Odolinski,et al.  Combined BDS, Galileo, QZSS and GPS single-frequency RTK , 2014, GPS Solutions.

[3]  P. Teunissen Least-squares estimation of the integer GPS ambiguities , 1993 .

[4]  Peter Teunissen,et al.  A canonical theory for short GPS baselines. Part IV: precision versus reliability , 1997 .

[5]  Pawel Wielgosz,et al.  Selected properties of GPS and Galileo-IOV receiver intersystem biases in multi-GNSS data processing , 2015 .

[6]  Jinlong Li,et al.  Progress and performance evaluation of BeiDou global navigation satellite system: Data analysis based on BDS-3 demonstration system , 2018, Science China Earth Sciences.

[7]  Xiaolin Meng,et al.  Inter-System Differencing between GPS and BDS for Medium-Baseline RTK Positioning , 2017, Remote. Sens..

[8]  Peter Teunissen,et al.  Analysis of Galileo IOV + FOC signals and E5 RTK performance , 2017, GPS Solutions.

[9]  Pawel Wielgosz,et al.  On the Applicability of Galileo FOC Satellites with Incorrect Highly Eccentric Orbits: An Evaluation of Instantaneous Medium-Range Positioning , 2018, Remote. Sens..

[10]  Xingxing Li,et al.  Estimation and analysis of differential code biases for BDS3/BDS2 using iGMAS and MGEX observations , 2018, Journal of Geodesy.

[11]  Cuixian Lu,et al.  Initial assessment of the COMPASS/BeiDou-3: new-generation navigation signals , 2017, Journal of Geodesy.

[12]  Charles M. Meertens,et al.  TEQC: The Multi-Purpose Toolkit for GPS/GLONASS Data , 1999, GPS Solutions.

[13]  Robert Odolinski,et al.  Instantaneous BeiDou+GPS RTK positioning with high cut-off elevation angles , 2014, Journal of Geodesy.

[14]  Xiaochun Lu,et al.  Impact of BDS-3 experimental satellites to BDS-2: Service area, precise products, precise positioning , 2018, Advances in Space Research.

[15]  Xin Li,et al.  Precise orbit determination for BDS3 experimental satellites using iGMAS and MGEX tracking networks , 2018, Journal of Geodesy.

[16]  Nobuaki Kubo,et al.  Mixed GPS–BeiDou RTK with inter-systems bias estimation aided by CSAC , 2017, GPS Solutions.

[17]  Lambert Wanninger,et al.  BeiDou satellite-induced code pseudorange variations: diagnosis and therapy , 2015, GPS Solutions.

[18]  Zheng Yao,et al.  Overview of BDS III new signals , 2019, Navigation.

[19]  Jingnan Liu,et al.  Characterization of GNSS Signals Tracked by the iGMAS Network Considering Recent BDS-3 Satellites , 2018, Remote. Sens..

[20]  Xiaogong Hu,et al.  Performance of the BDS3 experimental satellite passive hydrogen maser , 2018, GPS Solutions.

[21]  Robert Odolinski,et al.  Low-cost, high-precision, single-frequency GPS–BDS RTK positioning , 2017, GPS Solutions.

[22]  Yue Mao,et al.  Introduction to BeiDou‐3 navigation satellite system , 2019, Navigation.

[23]  Jiang Guo,et al.  GPS + Galileo tightly combined RTK positioning for medium-to-long baselines based on partial ambiguity resolution , 2018 .

[24]  Dennis Odijk,et al.  ADOP in closed form for a hierarchy of multi-frequency single-baseline GNSS models , 2008 .

[25]  Pawel Wielgosz,et al.  Investigation of some selected strategies for multi-GNSS instantaneous RTK positioning , 2017 .

[26]  Robert Odolinski,et al.  Low-cost, 4-system, precise GNSS positioning: a GPS, Galileo, BDS and QZSS ionosphere-weighted RTK analysis , 2017 .

[27]  Mingkui Wu,et al.  Tightly Combined BeiDou B2 and Galileo E5b Signals for Precise Relative Positioning , 2017 .

[28]  P. Teunissen,et al.  The ratio test for future GNSS ambiguity resolution , 2013, GPS Solutions.

[29]  Wei Wang,et al.  Elevation-dependent pseudorange variation characteristics analysis for the new-generation BeiDou satellite navigation system , 2018, GPS Solutions.

[30]  Guanwen Huang,et al.  Early analysis of precise orbit and clock offset determination for the satellites of the global BeiDou-3 system , 2019, Advances in Space Research.

[31]  Xiaochun Lu,et al.  Inter-system biases in GPS and BDS combined relative positioning by double-differenced observations , 2019, Measurement Science and Technology.

[32]  A. Amiri-Simkooei,et al.  Assessing receiver noise using GPS short baseline time series , 2006 .

[33]  Mingkui Wu,et al.  Influencing Factors of GNSS Differential Inter-System Bias and Performance Assessment of Tightly Combined GPS, Galileo, and QZSS Relative Positioning for Short Baseline , 2018, Journal of Navigation.

[34]  Cuixian Lu,et al.  A comprehensive analysis of satellite-induced code bias for BDS-3 satellites and signals , 2017, Advances in Space Research.

[35]  Bin Wang,et al.  Performance of BDS-3: Measurement Quality Analysis, Precise Orbit and Clock Determination , 2017, Sensors.

[36]  Denghui Wang,et al.  Combined GPS and BDS for single-frequency continuous RTK positioning through real-time estimation of differential inter-system biases , 2017, GPS Solutions.

[37]  Jingnan Liu,et al.  Characteristics of BeiDou-3 Experimental Satellite Clocks , 2018, Remote. Sens..

[38]  Alexandra Verhagen,et al.  The GNSS integer ambiguities: estimation and validation , 2005 .

[39]  Pawel Wielgosz,et al.  Accounting for Galileo–GPS inter-system biases in precise satellite positioning , 2014, Journal of Geodesy.

[40]  Peter Teunissen,et al.  GPS, Galileo, QZSS and IRNSS differential ISBs: estimation and application , 2017, GPS Solutions.