Study of the Na Storage Mechanism in Silicon Oxycarbide—Evidence for Reversible Silicon Redox Activity

Advanced anode materials with high electrochemical performance are necessary for the development of competitive sodium-ion batteries. Much attention is focussed on materials that undergo a reversible alloying reaction with sodium and thus possess high capacities. Silicon-based compounds are interesting candidates for anode materials, but only show a relatively low electrochemical performance with sodium. Controversial reports are available about the electrochemical interaction between Na and silicon, which encouraged us to investigate the sodium-storage mechanism in a silicon-based material in detail. Here, we report the result of a systematic investigation of the electrochemical sodium ion storage process in silicon oxycarbide supported by ex-situ X-ray photoelectron spectroscopy (XPS) and magic-angle spinning nuclear magnetic resonance (MAS NMR). The comparison of the pristine and HF-etched silicon oxycarbide shows that the silicon is active, but not via an alloying process. Instead, the results reveal an irreversible structural change and amorphization of SiCO upon the initial sodium uptake and support the existence of reversible conversion and insertion-based reactions afterwards. Submitted: 19.01.2018 *Corresp. authors: E-mail: stefano.passerini@kit.edu; daniel.buchholz@kit.edu

[1]  G. Mulder,et al.  Sodium‐Ion Battery Materials and Electrochemical Properties Reviewed , 2018 .

[2]  Mingdeng Wei,et al.  Preparation of a Si/SiO2 -Ordered-Mesoporous-Carbon Nanocomposite as an Anode for High-Performance Lithium-Ion and Sodium-Ion Batteries. , 2018, Chemistry.

[3]  S. Passerini,et al.  Research Update: Hard carbon with closed pores from pectin-free apple pomace waste for Na-ion batteries , 2018 .

[4]  W. Choi,et al.  One‐Pot Synthesis of Antimony‐Embedded Silicon Oxycarbide Materials for High‐Performance Sodium‐Ion Batteries , 2017 .

[5]  J. L. Gómez‐Cámer,et al.  Na‐Ion Batteries for Large Scale Applications: A Review on Anode Materials and Solid Electrolyte Interphase Formation , 2017 .

[6]  Stefano Passerini,et al.  Pectin, Hemicellulose, or Lignin? Impact of the Biowaste Source on the Performance of Hard Carbons for Sodium-Ion Batteries. , 2017, ChemSusChem.

[7]  Jusef Hassoun,et al.  Nanostructured Na-ion and Li-ion anodes for battery application: A comparative overview , 2017, Nano Research.

[8]  S. Yao,et al.  Recent progress in rational design of anode materials for high-performance Na-ion batteries , 2017 .

[9]  J. Kašpar,et al.  Silicon oxycarbide ceramics as anodes for lithium ion batteries: influence of carbon content on lithium storage capacity , 2016 .

[10]  Tianyu Tang,et al.  Nanostructured Anode Materials for Lithium Ion Batteries: Progress, Challenge and Perspective , 2016 .

[11]  Bruno Scrosati,et al.  A sodium-ion battery exploiting layered oxide cathode, graphite anode and glyme-based electrolyte , 2016 .

[12]  W. Tremel,et al.  Extraordinary Performance of Carbon‐Coated Anatase TiO2 as Sodium‐Ion Anode , 2015, Advanced energy materials.

[13]  M. Wohlfahrt‐Mehrens,et al.  Submicron-sized silicon oxycarbide spheres as anodes for alkali ion batteries , 2015 .

[14]  H. Usui,et al.  Electrochemical behavior of SiO as an anode material for Na-ion battery , 2015 .

[15]  J. P. Olivier,et al.  Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) , 2015 .

[16]  J. Hassoun,et al.  A rechargeable sodium-ion battery using a nanostructured Sb–C anode and P2-type layered Na0.6Ni0.22Fe0.11Mn0.66O2 cathode , 2015 .

[17]  Atsuo Yamada,et al.  Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors , 2015, Nature Communications.

[18]  Shinichi Komaba,et al.  Negative electrodes for Na-ion batteries. , 2014, Physical chemistry chemical physics : PCCP.

[19]  S. Jung,et al.  Atom-Level Understanding of the Sodiation Process in Silicon Anode Material. , 2014, The journal of physical chemistry letters.

[20]  Liquan Chen,et al.  Room-temperature stationary sodium-ion batteries for large-scale electric energy storage , 2013 .

[21]  Teófilo Rojo,et al.  Update on Na-based battery materials. A growing research path , 2013 .

[22]  Rémi Dedryvère,et al.  Towards high energy density sodium ion batteries through electrolyte optimization , 2013 .

[23]  A. Renault,et al.  Dispersion behaviour of laser-synthesized silicon carbide nanopowders in ethanol for electrophoretic infiltration , 2012 .

[24]  Wataru Murata,et al.  Redox reaction of Sn-polyacrylate electrodes in aprotic Na cell , 2012 .

[25]  Kai Xie,et al.  Mechanism of lithium storage in SiOC composite anodes , 2011 .

[26]  K. Kanamura,et al.  A Si-O-C composite anode: high capability and proposed mechanism of lithium storage associated with microstructural characteristics. , 2010, ACS applied materials & interfaces.

[27]  A. Kohyama,et al.  Influence of surface structure of SiC nano-sized powder analyzed by X-ray photoelectron spectroscopy on basic powder characteristics , 2007 .

[28]  R. Raj,et al.  A Model for the Nanodomains in Polymer‐Derived SiCO , 2006 .

[29]  J. Dahn,et al.  Study of Irreversible Capacities for Li Insertion in Hard and Graphitic Carbons , 1997 .

[30]  F. Babonneau,et al.  Structural Characterization and High‐Temperature Behavior of Silicon Oxycarbide Glasses Prepared from Sol‐Gel Precursors Containing Si‐H Bonds , 1995 .

[31]  F. Babonneau,et al.  Dimethyldiethoxysilane/tetraethoxysilane copolymers: precursors for the silicon-carbon-oxygen system , 1989 .

[32]  K. Sing Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984) , 1985 .

[33]  J. Tarascon,et al.  Towards greener and more sustainable batteries for electrical energy storage. , 2015, Nature chemistry.

[34]  D. Bresser,et al.  Nanocrystalline TiO2(B) as Anode Material for Sodium-Ion Batteries , 2015 .

[35]  L. Ellis,et al.  In Situ XRD Study of Silicon, Lead and Bismuth Negative Electrodes in Nonaqueous Sodium Cells , 2014 .

[36]  D. Chung,et al.  Improving the electrochemical behavior of carbon black and carbon filaments by oxidation , 1997 .