Nonlinear damping in a micromechanical oscillator

[1]  H. Ouakad,et al.  Nonlinear dynamics of a resonant gas sensor , 2010 .

[2]  Ron Lifshitz,et al.  Nonlinear Dynamics of Nanomechanical and Micromechanical Resonators , 2009 .

[3]  M. Blencowe,et al.  Damping and decoherence of a nanomechanical resonator due to a few two-level systems , 2009, 0907.0431.

[4]  Z. Lang,et al.  Frequency domain analysis of a dimensionless cubic nonlinear damping system subject to harmonic input , 2009 .

[5]  Markus Aspelmeyer,et al.  Focus on Mechanical Systems at the Quantum Limit , 2008 .

[6]  Harold G. Craighead,et al.  The pull-in behavior of electrostatically actuated bistable microstructures , 2008 .

[7]  C. Stambaugh,et al.  Paths of fluctuation induced switching. , 2008, Physical review letters.

[8]  I. Wilson-Rae,et al.  Intrinsic dissipation in nanomechanical resonators due to phonon tunneling , 2007, 0710.0200.

[9]  M. Roukes,et al.  Basins of attraction of a nonlinear nanomechanical resonator. , 2007, Physical review letters.

[10]  Todd H. Stievater,et al.  Measured limits of detection based on thermal-mechanical frequency noise in micromechanical sensors , 2007 .

[11]  R. Almog,et al.  Signal amplification in a nanomechanical Duffing resonator via stochastic resonance , 2006, cond-mat/0611049.

[12]  Balakumar Balachandran,et al.  Parametric identification of piezoelectric microscale resonators , 2006 .

[13]  O. Kogan Controlling transitions in a Duffing oscillator by sweeping parameters in time. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  R. Almog,et al.  Noise squeezing in a nanomechanical Duffing resonator. , 2006, Physical review letters.

[15]  B. Yurke,et al.  Mass detection with a nonlinear nanomechanical resonator. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  M. Geller,et al.  Friction in nanoelectromechanical systems: Clamping loss in the GHz regime , 2005, cond-mat/0512710.

[17]  R.B. Reichenbach,et al.  Third-order intermodulation in a micromechanical thermal mixer , 2005, Journal of Microelectromechanical Systems.

[18]  R. L. Badzey,et al.  Quantum friction in nanomechanical oscillators at millikelvin temperatures , 2005, cond-mat/0603691.

[19]  R. Almog,et al.  High intermodulation gain in a micromechanical Duffing resonator , 2005, cond-mat/0511587.

[20]  B. Yurke,et al.  Dephasing due to intermode coupling in superconducting stripline resonators , 2005, quant-ph/0511033.

[21]  Steven W. Shaw,et al.  Tunable Microelectromechanical Filters that Exploit Parametric Resonance , 2005 .

[22]  Michael L. Roukes,et al.  Putting mechanics into quantum mechanics , 2005 .

[23]  D. Mounce,et al.  Magnetic resonance force microscopy , 2005, IEEE Instrumentation & Measurement Magazine.

[24]  B. Yurke,et al.  Performance of Cavity-Parametric Amplifiers, Employing Kerr Nonlinearites, in the Presence of Two-Photon Loss , 2005, Journal of Lightwave Technology.

[25]  P. Hänggi,et al.  Fundamental aspects of quantum Brownian motion. , 2004, Chaos.

[26]  B. Chui,et al.  Single spin detection by magnetic resonance force microscopy , 2004, Nature.

[27]  S. Krylov,et al.  Pull-in Dynamics of an Elastic Beam Actuated by Continuously Distributed Electrostatic Force , 2004 .

[28]  J. Rogers,et al.  Synchronization by nonlinear frequency pulling. , 2004, Physical review letters.

[29]  A. Cleland,et al.  Noise-enabled precision measurements of a duffing nanomechanical resonator. , 2004, Physical review letters.

[30]  H. Craighead,et al.  Attogram detection using nanoelectromechanical oscillators , 2004 .

[31]  M. Dykman,et al.  Critical exponent crossovers in escape near a bifurcation point. , 2004, Physical review letters.

[32]  M. Roukes,et al.  Ultrasensitive nanoelectromechanical mass detection , 2004, cond-mat/0402528.

[33]  M. Roukes,et al.  Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems , 2003, physics/0309075.

[34]  Masayoshi Esashi,et al.  Time dependence of energy dissipation in resonating silicon cantilevers in ultrahigh vacuum , 2003 .

[35]  Axel Scherer,et al.  Nanowire-Based Very-High-Frequency Electromechanical Resonator , 2003 .

[36]  A. Cleland,et al.  Nanometre-scale displacement sensing using a single electron transistor , 2003, Nature.

[37]  W. Q. Zhu,et al.  First-Passage Time of Duffing Oscillator under Combined Harmonic and White-Noise Excitations , 2003 .

[38]  Kimberly L. Turner,et al.  Tuning the dynamic behavior of parametric resonance in a micromechanical oscillator , 2003 .

[39]  Michael L. Roukes,et al.  Electrically tunable collective response in a coupled micromechanical array , 2002 .

[40]  Wenhua Zhang,et al.  Effect of cubic nonlinearity on auto-parametrically amplified resonant MEMS mass sensor , 2002 .

[41]  M. Cross,et al.  Response of parametrically driven nonlinear coupled oscillators with application to micromechanical and nanomechanical resonator arrays , 2002, cond-mat/0208394.

[42]  M. Roukes,et al.  Noise processes in nanomechanical resonators , 2002 .

[43]  Ron Lifshitz,et al.  Phonon-mediated dissipation in micro- and nano-mechanical systems , 2002 .

[44]  M. Boltezar,et al.  AN APPROACH TO PARAMETER IDENTIFICATION FOR A SINGLE-DEGREE-OF-FREEDOM DYNAMICAL SYSTEM BASED ON SHORT FREE ACCELERATION RESPONSE , 2002 .

[45]  D. Photiadis,et al.  Thermoelastic loss in microscale oscillators , 2002 .

[46]  Gerard J. Milburn,et al.  Quantum electromechanical systems , 2001, SPIE Micro + Nano Materials, Devices, and Applications.

[47]  Miguel A. F. Sanjuán,et al.  Energy dissipation in a nonlinearly damped Duffing oscillator , 2001 .

[48]  M. Roukes Nanoelectromechanical systems face the future , 2001 .

[49]  M. Cross,et al.  Elastic Wave Transmission at an Abrupt Junction in a Thin Plate, with Application to Heat Transport and Vibrations in Mesoscopic Systems , 2000, cond-mat/0011501.

[50]  M. R. Hajj,et al.  Damping Identification Using Perturbation Techniques and Higher-Order Spectra , 2000 .

[51]  Michael J. Leamy,et al.  INTERNAL RESONANCES IN WHIRLING STRINGS INVOLVING LONGITUDINAL DYNAMICS AND MATERIAL NON-LINEARITIES , 2000 .

[52]  Miguel A. F. Sanjuán,et al.  Analytical Estimates of the Effect of nonlinear damping in some nonlinear oscillators , 2000, Int. J. Bifurc. Chaos.

[53]  M. Roukes,et al.  Metastability and the Casimir effect in micromechanical systems , 2000, cond-mat/0008096.

[54]  M. Roukes,et al.  Stiction, adhesion energy, and the Casimir effect in micromechanical systems , 2000, cond-mat/0008051.

[55]  Michael L. Roukes,et al.  Energy dissipation in suspended micromechanical resonators at low temperatures , 2000 .

[56]  T. Kenny,et al.  Quality factors in micron- and submicron-thick cantilevers , 2000, Journal of Microelectromechanical Systems.

[57]  J. M. Worlock,et al.  Measurement of the quantum of thermal conductance , 2000, Nature.

[58]  H Germany,et al.  Mechanical mixing in nonlinear nanomechanical resonators , 1999, cond-mat/9912278.

[59]  M. Roukes,et al.  Thermoelastic damping in micro- and nanomechanical systems , 1999, cond-mat/9909271.

[60]  Xiao Liu,et al.  LOW-TEMPERATURE INTERNAL FRICTION IN METAL FILMS AND IN PLASTICALLY DEFORMED BULK ALUMINUM , 1999 .

[61]  Miguel A. F. Sanjuán,et al.  The Effect of Nonlinear Damping on the Universal Escape Oscillator , 1999 .

[62]  N. C. MacDonald,et al.  Five parametric resonances in a microelectromechanical system , 1998, Nature.

[63]  M. Feldman,et al.  Application of a Hilbert Transform-Based Algorithm for Parameter Estimation of a Nonlinear Ocean System Roll Model , 1997 .

[64]  L. Meirovitch Principles and techniques of vibrations , 1996 .

[65]  D. Greywall,et al.  Theory of amplifier-noise evasion in an oscillator employing a nonlinear resonator. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[66]  Ali H. Nayfeh,et al.  An Experimental Investigation of Energy Transfer from a High- Frequency Mode to a Low-Frequency Mode in a Flexible Structure , 1995 .

[67]  Marwan Bikdash,et al.  Melnikov analysis for a ship with a general roll-damping model , 1994, Nonlinear Dynamics.

[68]  Mallik,et al.  Role of nonlinear dissipation in soft Duffing oscillators. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[69]  A. K. Mallik,et al.  Stability Analysis of a Non-Linearly Damped Duffing Oscillator , 1994 .

[70]  Habib,et al.  Nonlinear noise in cosmology. , 1992, Physical review. D, Particles and fields.

[71]  D. Rugar,et al.  Mechanical parametric amplification and thermomechanical noise squeezing. , 1991, Physical review letters.

[72]  P. Hänggi,et al.  Reaction-rate theory: fifty years after Kramers , 1990 .

[73]  D. Arrowsmith,et al.  GEOMETRICAL METHODS IN THE THEORY OF ORDINARY DIFFERENTIAL EQUATIONS (Grundlehren der mathematischen Wissenschaften, 250) , 1984 .

[74]  A. Leggett,et al.  Path integral approach to quantum Brownian motion , 1983 .

[75]  W. Hume-rothery Elasticity and Anelasticity of Metals , 1949, Nature.

[76]  T. Kê Stress Relaxation across Grain Boundaries in Metals , 1947 .

[77]  H. Kramers Brownian motion in a field of force and the diffusion model of chemical reactions , 1940 .

[78]  M. LaHaye Approaching the Quantum Limit of a , 2008 .

[79]  小野 崇人,et al.  Effect of Ion Attachment on Mechanical Dissipation of a Resonator , 2005 .

[80]  M. Younis,et al.  A Study of the Nonlinear Response of a Resonant Microbeam to an Electric Actuation , 2003 .

[81]  Wenhua Zhang,et al.  Nonlinear Behavior of a Parametric Resonance-Based Mass Sensor , 2002 .

[82]  O. Gottlieb,et al.  Nonlinear Dynamics of a Taut String with Material Nonlinearities , 2001 .

[83]  Peter Hänggi,et al.  Generalized langevin equations: A useful tool for the perplexed modeller of nonequilibrium fluctuations? , 1997 .

[84]  Iu. L. Klimontovich A unified approach to kinetic description of processes in active systems , 1995 .

[85]  Vladimir Igorevich Arnold,et al.  Geometrical Methods in the Theory of Ordinary Differential Equations , 1983 .

[86]  R. Kubo The fluctuation-dissipation theorem , 1966 .

[87]  P. Ullersma An exactly solvable model for Brownian motion: II. Derivation of the Fokker-Planck equation and the master equation , 1966 .

[88]  P. Ullersma An exactly solvable model for Brownian motion: I. Derivation of the Langevin equation , 1966 .

[89]  S. Chandrasekhar Stochastic problems in Physics and Astronomy , 1943 .