Electrically switching transverse modes in high power THz quantum cascade lasers.

The design and fabrication of a high power THz quantum cascade laser (QCL), with electrically controllable transverse mode is presented. The switching of the beam pattern results in dynamic beam switching using a symmetric side current injection scheme. The angular-resolved L-I curves measurements, near-field and far-field patterns and angular-resolved lasing spectra are presented. The measurement results confirm that the quasi-TM(01) transverse mode lases first and dominates the lasing operation at lower current injection, while the quasi-TM(00) mode lases at a higher threshold current density and becomes dominant at high current injection. The near-field and far-field measurements confirm that the lasing THz beam is maneuvered by 25 degrees in emission angle, when the current density changes from 1.9 kA/cm(2) to 2.3 kA/cm(2). A two-dimension (2D) current and mode calculation provides a simple model to explain the behavior of each mode under different bias conditions.

[1]  Qi Jie Wang,et al.  Small-divergence semiconductor lasers by plasmonic collimation , 2008 .

[2]  Federico Capasso,et al.  Near-field imaging of quantum cascade laser transverse modes. , 2007, Optics express.

[3]  Jérôme Faist,et al.  Horn antennas for terahertz quantum cascade lasers , 2007 .

[4]  A. Davies,et al.  Effect of transverse mode structure on the far field pattern of metal-metal terahertz quantum cascade lasers , 2008 .

[5]  D. Bour,et al.  Narrow stripe-width, low-ridge high power quantum cascade lasers , 2007 .

[6]  Masayoshi Tonouchi,et al.  Cutting-edge terahertz technology , 2007 .

[7]  D. Ban,et al.  Time-Resolved Thermal Quenching of THz Quantum Cascade Lasers , 2010, IEEE Journal of Quantum Electronics.

[8]  Qing Hu,et al.  High-power and high-temperature THz quantum-cascade lasers based on lens-coupled metal-metal waveguides. , 2007, Optics letters.

[9]  R. Terazzi,et al.  Population inversion by resonant tunneling in quantum wells , 2007 .

[10]  Werner Schrenk,et al.  Vertically emitting terahertz quantum cascade ring lasers , 2009 .

[11]  Mattias Beck,et al.  Low-divergence single-mode terahertz quantum cascade laser , 2009 .

[12]  Qing Hu,et al.  Surface-emitting distributed feedback terahertz quantum-cascade lasers in metal-metal waveguides. , 2007, Optics express.

[13]  E. Dupont,et al.  Simplified density-matrix model applied to three-well terahertz quantum cascade lasers , 2010 .

[14]  Dayan Ban,et al.  Thermal Behavior Investigation of Terahertz Quantum-Cascade Lasers , 2008, IEEE Journal of Quantum Electronics.

[15]  T. M. Klapwijk,et al.  Antenna model for wire lasers. , 2006, Physical review letters.

[16]  T M Klapwijk,et al.  Surface plasmon quantum cascade lasers as terahertz local oscillators. , 2008, Optics letters.

[17]  A. Davies,et al.  Predictable surface emission patterns in terahertz photonic-crystal quantum cascade lasers. , 2009, Optics express.

[18]  Jerry Waldman,et al.  Transformation of the multimode terahertz quantum cascade laser beam into a Gaussian, using a hollow dielectric waveguide. , 2007, Applied optics.

[19]  M. Lipson,et al.  First-principle derivation of gain in high-index-contrast waveguides. , 2008, Optics express.

[20]  M. Beck,et al.  Coupling terahertz radiation between sub-wavelength metal-metal waveguides and free space using monolithically integrated horn antennae. , 2009, Optics express.

[21]  Qing Hu,et al.  Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators , 2005 .

[22]  Qing Hu,et al.  186 K Operation of Terahertz Quantum-Cascade Lasers Based on a Diagonal Design , 2009 .

[23]  Z. R. Wasilewski,et al.  Terahertz quantum-cascade lasers based on a three-well active module , 2007 .