Properties of a genetic algorithm extended by a random self-learning operator and asymmetric mutations: A convergence study for a task of powder-pattern indexing

Genetic algorithms represent a powerful global-optimisation tool applicable in solving tasks of high complexity in science, technology, medicine, communication, etc. The usual genetic-algorithm calculation scheme is extended here by introduction of a quadratic self-learning operator, which performs a partial local search for randomly selected representatives of the population. This operator is aimed as a minor deterministic contribution to the (stochastic) genetic search. The population representing the trial solutions is split into two equal subpopulations allowed to exhibit different mutation rates (so called asymmetric mutation). The convergence is studied in detail exploiting a crystallographic-test example of indexing of powder diffraction data of orthorhombic lithium copper oxide, varying such parameters as mutation rates and the learning rate. It is shown through the averaged (over the subpopulation) fitness behaviour, how the genetic diversity in the population depends on the mutation rate of the given subpopulation. Conditions and algorithm parameter values favourable for convergence in the framework of proposed approach are discussed using the results for the mentioned example. Further data are studied with a somewhat modified algorithm using periodically varying mutation rates and a problem-specific operator. The chance of finding the global optimum and the convergence speed are observed to be strongly influenced by the effective mutation level and on the self-learning level. The optimal values of these two parameters are about 6 and 5%, respectively. The periodic changes of mutation rate are found to improve the explorative abilities of the algorithm. The results of the study confirm that the applied methodology leads to improvement of the classical genetic algorithm and, therefore, it is expected to be helpful in constructing of algorithms permitting to solve similar tasks of higher complexity.

[1]  J. Crow A new study challenges the current belief of a high human male:female mutation ratio. , 2000, Trends in genetics : TIG.

[2]  Roy L. Johnston,et al.  Definition of a `guiding function' in global optimization: a hybrid approach combining energy and R-factor in structure solution from powder diffraction data , 2000 .

[3]  Hans-Beat Bürgi,et al.  Determination and refinement of disordered crystal structures using evolutionary algorithms in combination with Monte Carlo methods. , 2002, Acta crystallographica. Section A, Foundations of crystallography.

[4]  Scott M. Woodley,et al.  Prediction of crystal structures using evolutionary algorithms and related techniques , 2004 .

[5]  Jacek Tarasiuk,et al.  Texture decomposition into Gauss-shaped functions: classical and genetic algorithm methods , 2004 .

[6]  Roy L. Johnston,et al.  Development and optimisation of a novel genetic algorithm for studying model protein folding , 2004 .

[7]  Bernd Freisleben,et al.  New Genetic Local Search Operators for the Traveling Salesman Problem , 1996, PPSN.

[8]  Laurence Marks,et al.  Multi-Solution Genetic Algorithm Approach to Surface Structure Determination Using Direct Methods , 1997 .

[9]  Jeong-Woo Choi,et al.  Analysis of defects in CdA Langmuir-Blodgett film using synchrotron X-ray radiation , 1998 .

[10]  Ernö Pretsch,et al.  Application of genetic algorithms in molecular modeling , 1994, J. Comput. Chem..

[11]  J. W. Visser A fully automatic program for finding the unit cell from powder data , 1969 .

[12]  P Chacón,et al.  Reconstruction of protein form with X-ray solution scattering and a genetic algorithm. , 2000, Journal of molecular biology.

[13]  Roy L. Johnston,et al.  The genetic algorithm : Foundations and applications in structure solution from powder diffraction data , 1998 .

[14]  D. J. Cavicchio,et al.  Adaptive search using simulated evolution , 1970 .

[15]  Ponnuthurai N. Suganthan,et al.  Evaluation of genetic operators and solution representations for shape recognition by genetic algorithms , 2002, Pattern Recognit. Lett..

[16]  Roy L. Johnston,et al.  Development of a multipopulation parallel genetic algorithm for structure solution from powder diffraction data , 2003, J. Comput. Chem..

[17]  Edmund K. Burke,et al.  Hybrid evolutionary techniques for the maintenance scheduling problem , 2000 .

[18]  L. Hurst,et al.  Human genetics: Mystery of the mutagenic male , 2002, Nature.

[19]  Ho,et al.  Molecular geometry optimization with a genetic algorithm. , 1995, Physical review letters.

[20]  D. Maddalena,et al.  Applications of genetic algorithms to drug design , 1997 .

[21]  Jose Torres-Jimenez,et al.  Analysis of x-ray diffraction data using a hybrid stochastic optimization method , 2002 .

[22]  Joseph Albert Hageman,et al.  Optimal Optimisation in Chemometrics , 2004 .

[23]  Roy L Johnston,et al.  Geometry optimisation of aluminium clusters using a genetic algorithm. , 2002, Chemphyschem : a European journal of chemical physics and physical chemistry.

[24]  Sankar K. Pal,et al.  Genetic Algorithms for Pattern Recognition , 2017 .

[25]  Andrzej Jaszkiewicz,et al.  Genetic local search for multi-objective combinatorial optimization , 2022 .

[26]  D.K.G. De Boer,et al.  Application of genetic algorithms for characterization of thin layered materials by glancing incidence X-ray reflectometry , 1998 .

[27]  Hisashi Tamaki,et al.  Parallelization of genetic algorithm with sexual selection , 2005 .

[28]  Carmelo Giacovazzo,et al.  New techniques for indexing: N-TREOR in EXPO , 2000 .

[29]  Kateryna D. Makova,et al.  Strong male-driven evolution of DNA sequences in humans and apes , 2002, Nature.

[30]  K. Omote,et al.  The genetic algorithm: refinement of X-ray reflectivity data from multilayers and thin films , 2000 .

[31]  Lutgarde M. C. Buydens,et al.  The quality of optimisation by genetic algorithms , 1999 .

[32]  Alice E. Smith,et al.  Local search genetic algorithm for optimal design of reliable networks , 1997, IEEE Trans. Evol. Comput..

[33]  Jacek Blazewicz,et al.  Hybrid Genetic Algorithm for DNA Sequencing with Errors , 2002, J. Heuristics.

[34]  Henk B. Verbruggen,et al.  Artificial Intelligence in Real-Time Control , 1992 .

[35]  Thomas Dandekar,et al.  Improving Protein Structure Prediction by New Strategies: Experimental Insights and the Genetic Algorithm , 1997 .

[36]  Marek W. Gutowski,et al.  Smooth genetic algorithm , 1994 .

[37]  H. Ellegren,et al.  LIFE HISTORY AND THE MALE MUTATION BIAS , 2003, Evolution; international journal of organic evolution.

[38]  Kenneth Alan De Jong,et al.  An analysis of the behavior of a class of genetic adaptive systems. , 1975 .

[39]  V. Zlokazov,et al.  Renewed interest in powder diffraction data indexing , 2004 .

[40]  Kin Yip Tam,et al.  GAMATCH : a genetic algorithm-based program for indexing crystal faces , 1995 .

[41]  Jacek Tarasiuk,et al.  Genetic Algorithms, a New Concept in Texture Analysis , 1998 .

[42]  L. Darrell Whitley,et al.  Comparing heuristic search methods and genetic algorithms for warehouse scheduling , 1998, SMC'98 Conference Proceedings. 1998 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.98CH36218).

[43]  Roy L. Johnston,et al.  A new approach for indexing powder diffraction data based on whole‐profile fitting and global optimization using a genetic algorithm , 1999 .

[44]  Roy L. Johnston,et al.  Structure determination of a steroid directly from powder diffraction data , 1999 .

[45]  Mitsuo Gen,et al.  Genetic algorithms and engineering design , 1997 .

[46]  David Coley,et al.  Fitting reflectivity data from liquid crystal cells using genetic algorithms , 1997 .

[47]  Marcus A. Neumann,et al.  X-Cell: a novel indexing algorithm for routine tasks and difficult cases , 2003 .

[48]  D. K. Bowen,et al.  Characterization of structures from X-ray scattering data using genetic algorithms , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[49]  W. Paszkowicz,et al.  Application of optimization to powder-pattern indexing , 1987 .

[50]  B. Lavine,et al.  Genetic Algorithms in Analytical Chemistry , 1999 .

[51]  Daniel Louër,et al.  Powder pattern indexing with the dichotomy method , 2004 .

[52]  C. Lucas,et al.  A new genetic algorithm with Lamarckian individual learning for generation scheduling , 2003 .

[53]  Yasuhiro Tsujimura,et al.  A tutorial survey of job-shop scheduling problems using genetic algorithms, part II: hybrid genetic search strategies , 1999 .

[54]  Hisao Ishibuchi,et al.  Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling , 2003, IEEE Trans. Evol. Comput..

[55]  J. Gale,et al.  The prediction of inorganic crystal structures using a genetic algorithm and energy minimisation , 1999 .

[56]  V. Bazterra,et al.  Modified genetic algorithm to model crystal structures. I. Benzene, naphthalene and anthracene , 2002 .

[57]  Julio C. Facelli,et al.  Modified genetic algorithms to model cluster structures in medium-size silicon clusters , 2004 .

[58]  Wojciech Paszkowicz On the estimation of the unit-cell volume from powder diffraction data , 1987 .

[59]  Yoshiyuki Kawazoe,et al.  Surface Reconstruction of Si (001) by Genetic Algorithm and Simulated Annealing Method(STM-Si(001)) , 1997 .

[60]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[61]  M. Kirkpatrick,et al.  MALE‐BIASED MUTATION, SEX LINKAGE, AND THE RATE OF ADAPTIVE EVOLUTION , 2004, Evolution; international journal of organic evolution.

[62]  Chan Ghee Koh,et al.  A hybrid computational strategy for identification of structural parameters , 2003 .

[63]  W. Paszkowicz,et al.  Application of the Smooth Genetic Algorithm for Indexing Powder Patterns – Tests for the Orthorhombic System , 1996 .

[64]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[65]  K. Wiese,et al.  A permutation-based genetic algorithm for the RNA folding problem: a critical look at selection strategies, crossover operators, and representation issues. , 2003, Bio Systems.

[66]  K. Harris,et al.  The application of a genetic algorithm for solving crystal structures from powder diffraction data , 1997 .

[67]  Karo Michaelian A symbiotic algorithm for finding the lowest energy isomers of large clusters and molecules , 1998 .

[68]  Wayne Pullan,et al.  Genetic operators for the atomic cluster problem , 1997 .

[69]  L. Darrell Whitley,et al.  An overview of evolutionary algorithms: practical issues and common pitfalls , 2001, Inf. Softw. Technol..

[70]  K. Shankland,et al.  Crystal Structure Determination from Powder Diffraction Data by the Application of a Genetic Algorithm , 1998 .

[71]  Roy L. Johnston,et al.  Implementation of Lamarckian concepts in a Genetic Algorithm for structure solution from powder diffraction data , 2000 .

[72]  Francisco Herrera,et al.  Real-Coded Memetic Algorithms with Crossover Hill-Climbing , 2004, Evolutionary Computation.

[73]  John A. Miller,et al.  Using the genetic algorithm to find snake-in-the-box codes , 1994, IEA/AIE '94.

[74]  P Argos,et al.  Probing Flp: a new approach to analyze the structure of a DNA recognizing protein by combining the genetic algorithm, mutagenesis and non-canonical DNA target sites. , 1997, Biochimica et biophysica acta.

[75]  William I. F. David,et al.  Crystal structure determination from powder diffraction data by the application of a genetic algorithm , 1997 .

[76]  H. Ellegren Human mutation—blame (mostly) men , 2002, Nature Genetics.

[77]  S Forrest,et al.  Genetic algorithms , 1996, CSUR.

[78]  Patrick Tan,et al.  Genetic algorithms applied to multi-class prediction for the analysis of gene expression data , 2003, Bioinform..

[79]  H. Ellegren,et al.  Sex-Specific Mutation Rates in Salmonid Fish , 2003, Journal of Molecular Evolution.

[80]  R. Johnston,et al.  A genetic algorithm for the structural optimization of Morse clusters , 2000 .

[81]  Patrick Siarry,et al.  Genetic and Nelder-Mead algorithms hybridized for a more accurate global optimization of continuous multiminima functions , 2003, Eur. J. Oper. Res..

[82]  Masao Iwamatsu Global Conformation Optimization Of Mixed Clusters Using A Genetic Algorithm , 2002 .

[83]  Ioannis B. Theocharis,et al.  Microgenetic algorithms as generalized hill-climbing operators for GA optimization , 2001, IEEE Trans. Evol. Comput..

[84]  David E. Clark,et al.  Evolutionary algorithms in computer-aided molecular design , 1996, J. Comput. Aided Mol. Des..

[85]  Roy L. Johnston,et al.  Gaining insights into the evolutionary behaviour in genetic algorithm calculations, with applications in structure solution from powder diffraction data , 2002 .

[86]  Andrew Lim,et al.  Sexual Selection for Genetic Algorithms , 2003, Artificial Intelligence Review.

[87]  E. Jablonka,et al.  'Lamarckian' mechanisms in darwinian evolution. , 1998, Trends in ecology & evolution.

[88]  Andreas Schwienhorst,et al.  Genetic algorithm for the design of molecules with desired properties , 2002, J. Comput. Aided Mol. Des..

[89]  M. J. Denham,et al.  Developments in the use of the genetic algorithm in engineering design , 1995 .

[90]  Ron Unger The Genetic Algorithm Approach to Protein Structure Prediction , 2004 .

[91]  Lutgarde M. C. Buydens,et al.  Powder pattern indexing using the weighted crosscorrelation and genetic algorithms , 2003, J. Comput. Chem..