Convergence of the Time Discrete Metamorphosis Model on Hadamard Manifolds

Continuous image morphing is a classical task in image processing. The metamorphosis model proposed by Trouv\'e, Younes and coworkers casts this problem in the frame of Riemannian geometry and geodesic paths between images. The associated metric in the space of images incorporates dissipation caused by a viscous flow transporting image intensities and its variations along motion paths. In many applications, images are maps from the image domain into a manifold (e.g. in diffusion tensor imaging (DTI) the manifold of symmetric positive definite matrices with a suitable Riemannian metric). In this paper, we propose a generalized metamorphosis model for manifold-valued images, where the range space is a finite-dimensional Hadamard manifold. A corresponding time discrete version was presented by Neumayer et al. based on the general variational time discretization proposed by Berkels et al. Here, we prove the Mosco--convergence of the time discrete metamorphosis functional to the proposed manifold-valued metamorphosis model, which implies the convergence of time discrete geodesic paths to a geodesic path in the (time continuous) metamorphosis model. In particular, the existence of geodesic paths is established. In fact, images as maps into Hadamard manifold are not only relevant in applications, but it is also shown that the joint convexity of the distance function which characterizes Hadamard manifolds is a crucial ingredient to establish existence of the metamorphosis model.

[1]  Maher Moakher,et al.  Symmetric Positive-Definite Matrices: From Geometry to Applications and Visualization , 2006, Visualization and Processing of Tensor Fields.

[2]  M. Bacák Convex Analysis and Optimization in Hadamard Spaces , 2014 .

[3]  U. Mosco Convergence of convex sets and of solutions of variational inequalities , 1969 .

[4]  Alain Trouvé,et al.  Metamorphoses of Functional Shapes in Sobolev Spaces , 2016, Foundations of Computational Mathematics.

[5]  L. Younes,et al.  On the metrics and euler-lagrange equations of computational anatomy. , 2002, Annual review of biomedical engineering.

[6]  Alain Trouvé,et al.  Metamorphoses Through Lie Group Action , 2005, Found. Comput. Math..

[7]  Benjamin Berkels,et al.  Time Discrete Geodesic Paths in the Space of Images , 2015, SIAM J. Imaging Sci..

[8]  Gabriele Steidl,et al.  A Second Order Nonsmooth Variational Model for Restoring Manifold-Valued Images , 2015, SIAM J. Sci. Comput..

[9]  Alain Trouvé,et al.  Hamiltonian Systems and Optimal Control in Computational Anatomy: 100 Years Since D'Arcy Thompson. , 2015, Annual review of biomedical engineering.

[10]  Martin Kruzík,et al.  Weak Lower Semicontinuity of Integral Functionals and Applications , 2017, SIAM Rev..

[11]  Daniel Cremers,et al.  Total Variation Regularization for Functions with Values in a Manifold , 2013, 2013 IEEE International Conference on Computer Vision.

[12]  Jürgen Jost,et al.  Nonpositive Curvature: Geometric And Analytic Aspects , 1997 .

[13]  Martin Rumpf,et al.  Bézier Curves in the Space of Images , 2015, SSVM.

[14]  P. Basser,et al.  MR diffusion tensor spectroscopy and imaging. , 1994, Biophysical journal.

[15]  Benjamin Berkels,et al.  GPU-Based Image Geodesics for Optical Coherence Tomography , 2017, Bildverarbeitung für die Medizin.

[16]  F. Santambrogio,et al.  Extension to BV functions of the large deformation diffeomorphisms matching approach , 2009 .

[17]  Paul Malliavin,et al.  Integration and Probability , 1995, Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics.

[18]  V. Arnold Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits , 1966 .

[19]  Thomas Kappeler,et al.  On the Regularity of the Composition of Diffeomorphisms , 2011, 1107.0488.

[20]  Gabriele Steidl,et al.  Morphing of Manifold-Valued Images Inspired by Discrete Geodesics in Image Spaces , 2017, SIAM J. Imaging Sci..

[21]  Alexander Effland Discrete Riemannian Calculus and A Posteriori Error Control on Shape Spaces , 2017 .

[22]  I. Fonseca,et al.  Modern Methods in the Calculus of Variations: L^p Spaces , 2007 .

[23]  Gabriele Steidl,et al.  Regularization of inverse problems via time discrete geodesics in image spaces , 2018, Inverse Problems.

[24]  Michael I. Miller,et al.  Group Actions, Homeomorphisms, and Matching: A General Framework , 2004, International Journal of Computer Vision.

[25]  B. Dacorogna Direct methods in the calculus of variations , 1989 .

[26]  R. S. Rivlin,et al.  Multipolar continuum mechanics , 1964 .

[27]  Andreas Weinmann,et al.  Total Variation Regularization for Manifold-Valued Data , 2013, SIAM J. Imaging Sci..

[28]  Sebastian Ehrlichmann,et al.  Metric Spaces Of Non Positive Curvature , 2016 .

[29]  Laurent Younes,et al.  Metamorphosis of images in reproducing kernel Hilbert spaces , 2014, Adv. Comput. Math..

[30]  L. Younes,et al.  Computing metamorphoses between discrete measures , 2013 .

[31]  Martins Bruveris,et al.  On Completeness of Groups of Diffeomorphisms , 2014, 1403.2089.

[32]  Michael I. Miller,et al.  Landmark matching via large deformation diffeomorphisms , 2000, IEEE Trans. Image Process..

[33]  Gabriele Steidl,et al.  Examplar-Based Face Colorization Using Image Morphing , 2017, J. Imaging.

[34]  Jesús Angulo,et al.  Morphological Processing of Univariate Gaussian Distribution-Valued Images Based on Poincaré Upper-Half Plane Representation , 2014 .

[35]  Florian Schäfer,et al.  Image Extrapolation for the Time Discrete Metamorphosis Model: Existence and Applications , 2017, SIAM J. Imaging Sci..

[36]  V. Arnold,et al.  Topological methods in hydrodynamics , 1998 .

[37]  Rachid Deriche,et al.  Regularizing Flows for Constrained Matrix-Valued Images , 2004, Journal of Mathematical Imaging and Vision.

[38]  Paul Dupuis,et al.  Variational problems on ows of di eomorphisms for image matching , 1998 .

[39]  G. D. Maso,et al.  An Introduction to-convergence , 1993 .

[40]  R. Rivlin,et al.  Simple force and stress multipoles , 1964 .

[41]  Louis Nirenberg,et al.  An extended interpolation inequality , 1966 .

[42]  J. Necas,et al.  Multipolar viscous fluids , 1991 .

[43]  L. Younes Shapes and Diffeomorphisms , 2010 .

[44]  L. Ambrosio,et al.  Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .

[45]  Alain Trouvé,et al.  Local Geometry of Deformable Templates , 2005, SIAM J. Math. Anal..

[46]  Daniel C. Alexander,et al.  Camino: Open-Source Diffusion-MRI Reconstruction and Processing , 2006 .

[47]  P. Thomas Fletcher,et al.  Riemannian geometry for the statistical analysis of diffusion tensor data , 2007, Signal Process..

[48]  B. Bojarski,et al.  Sard's theorem for mappings in Hölder and Sobolev spaces , 2005 .

[49]  Gabriele Steidl,et al.  A Parallel Douglas-Rachford Algorithm for Minimizing ROF-like Functionals on Images with Values in Symmetric Hadamard Manifolds , 2015, SIAM J. Imaging Sci..

[50]  Kristian Bredies,et al.  Total Generalized Variation in Diffusion Tensor Imaging , 2013, SIAM J. Imaging Sci..

[51]  Alain Trouvé,et al.  Computing Large Deformation Metric Mappings via Geodesic Flows of Diffeomorphisms , 2005, International Journal of Computer Vision.

[52]  M. Rumpf,et al.  Variational time discretization of geodesic calculus , 2012, 1210.2097.

[53]  Daniel Rueckert,et al.  Diffeomorphic 3D Image Registration via Geodesic Shooting Using an Efficient Adjoint Calculation , 2011, International Journal of Computer Vision.

[54]  I. Holopainen Riemannian Geometry , 1927, Nature.

[55]  Otmar Scherzer,et al.  Regularization with Metric Double Integrals of Functions with Values in a Set of Vectors , 2018, Journal of Mathematical Imaging and Vision.

[56]  E. Stein Singular Integrals and Di?erentiability Properties of Functions , 1971 .