Integrability Conditions for Lotka-Volterra Planar Complex Quartic Systems Having Homogeneous Nonlinearities

In this paper we investigate the linearizability problem for the two-dimensional Lotka-Volterra complex quartic systems which are linear systems perturbed by fourth degree homogeneous polynomials, i.e., we consider systems of the form [email protected]?=x(1-a"3"0x^3-a"2"1x^2y-a"1"2xy^2-a"0"3y^3), [email protected]?=-y(1-b"3"0x^3-b"2"1x^2y-b"1"2xy^2-b"0"3y^3). The necessary and sufficient conditions for the linearizability of this system are found. From them the conditions for isochronicity of the corresponding real system can be derived.

[1]  Patrizia M. Gianni,et al.  Gröbner Bases and Primary Decomposition of Polynomial Ideals , 1988, J. Symb. Comput..

[2]  JAUME GINÉ,et al.  ORBITAL LINEARIZATION IN THE QUADRATIC LOTKA–VOLTERRA SYSTEMS AROUND SINGULAR POINTS VIA LIE SYMMETRIES , 2009 .

[3]  Jean-Charles Faugère,et al.  FGb: A Library for Computing Gröbner Bases , 2010, ICMS.

[4]  Christiane Rousseau,et al.  Normalizable, Integrable, and Linearizable Saddle Points for Complex Quadratic Systems in $$\mathbb{C}^2 $$ , 2003 .

[5]  Christiane Rousseau,et al.  Linearization of Isochronous Centers , 1995 .

[6]  Victor F. Edneral,et al.  Computer evaluation of cyclicity in planar cubic system , 1997, ISSAC.

[7]  Noel G. Lloyd,et al.  A cubic Kolmogorov system with six limit cycles , 2002 .

[8]  Valery G. Romanovski,et al.  Linearizability conditions of time-reversible quartic systems having homogeneous nonlinearities , 2008 .

[9]  Jaume Giné,et al.  Integrability of a linear center perturbed by a fourth degree homogeneous polynomial , 1996 .

[10]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[11]  Jaume Giné,et al.  Integrability conditions for Lotka–Volterra planar complex quintic systems , 2010 .

[12]  Y. Bibikov,et al.  Local Theory of Nonlinear Analytic Ordinary Differential Equations , 1979 .

[13]  W. Szlenk,et al.  Solution of the 1 : − 2 resonant center problem in the quadratic case , 2007 .

[14]  Hans Schönemann,et al.  SINGULAR: a computer algebra system for polynomial computations , 2001, ACCA.

[15]  Wentao Huang,et al.  A new method to determine isochronous center conditions for polynomial differential systems , 2003 .

[16]  Valery G. Romanovski,et al.  Linearizability of linear systems perturbed by fifth degree homogeneous polynomials , 2007 .

[17]  C. Rousseau,et al.  Nondegenerate linearizable centres of complex planar quadratic and symmetric cubic systems in $\mathbb{C}^2$ , 2001 .

[18]  Dumitru Cozma The Problem of the Centre for Cubic Systems with Two Parallel Invariant Straight Lines and One Invariant Conic , 2009 .

[19]  Valery G. Romanovski,et al.  Linearizability conditions for a cubic system , 2007, Appl. Math. Comput..

[21]  A. Fuller,et al.  Stability of Motion , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[22]  Jaume Giné,et al.  Isochronous centers of a linear center perturbed by fifth degree homogeneous polynomials , 2000 .

[23]  Luisa Mazzi,et al.  On the existence of global first integrals in the plane , 1993 .

[24]  James H. Davenport,et al.  P-adic reconstruction of rational numbers , 1982, SIGS.

[25]  Jaume Giné,et al.  On the Integrability of Two-Dimensional Flows , 1999 .

[26]  Simon Gravel,et al.  Integrability and Linearizability of the Lotka–Volterra System with a Saddle Point with Rational Hyperbolicity Ratio , 2002 .

[27]  Valery G. Romanovski,et al.  The Center and Cyclicity Problems: A Computational Algebra Approach , 2009 .

[28]  J. Giné,et al.  Integrability of a linear center perturbed by a fifth degree homogeneous polynomial , 1997 .

[29]  Alexandra Fronville,et al.  Solution of the 1 : −2 resonant center problem in the quadratic case , 1998 .

[30]  Valery G. Romanovski,et al.  The centre and isochronicity problems for some cubic systems , 2001 .

[31]  J.-P. Francoise,et al.  LES CONDITIONS DU CENTRE POUR UN CHAMP DE VECTEURS QUADRATIQUE , 1994 .

[32]  Guang Yuan Zhang From an iteration formula to Poincare's Isochronous Center Theorem for holomorphic vector fields , 2005 .

[33]  Liu Yi-Reng,et al.  THEORY OF VALUES OF SINGULAR POINT IN COMPLEX AUTONOMOUS DIFFERENTIAL SYSTEMS , 1990 .

[34]  Christiane Rousseau,et al.  DARBOUX LINEARIZATION AND ISOCHRONOUS CENTERS WITH A RATIONAL FIRST INTEGRAL , 1997 .

[35]  Carmen Chicone,et al.  Bifurcation of Limit Cycles from Quadratic Isochrones , 1991 .

[36]  Courtney S. Coleman,et al.  Hilbert’s 16th Problem: How Many Cycles? , 1983 .

[37]  V. Fernández,et al.  Centre and isochronicity conditions for systems with homogeneous nonlinearities , 1995 .

[38]  David A. Cox,et al.  Ideals, Varieties, and Algorithms , 1997 .

[39]  Jaume Giné,et al.  Characterization of isochronous foci for planar analytic differential systems , 2005, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[40]  Alexander D. Bruno,et al.  A System of Two Differential Equations , 1989 .

[41]  Jaume Giné,et al.  Darboux integrability and the inverse integrating factor , 2003 .

[42]  Eduardo Sáez,et al.  Limit cycles of a cubic Kolmogorov system , 1996 .

[43]  Jaume Giné Isochronous Foci for Analytic Differential Systems , 2003, Int. J. Bifurc. Chaos.

[44]  Jaume Giné,et al.  Isochronous centers of a linear center perturbed by fourth degree homogeneous polynomial , 1999 .