Growth and scintillation properties of Ce 3+:LuAG–Al2O3 chemically deposited eutectics

[1]  A. Ito,et al.  High-throughput production of LuAG-based highly luminescent thick film scintillators for radiation detection and imaging , 2022, Scientific Reports.

[2]  Y. Seto,et al.  ReciPro: free and open-source multipurpose crystallographic software integrating a crystal model database and viewer, diffraction and microscopy simulators, and diffraction data analysis tools , 2022, Journal of Applied Crystallography.

[3]  A. Ito,et al.  Photo- and Radioluminescence Properties of Eu3+-doped Y2O3 Thick Film Phosphor Prepared via Chemical Vapor Deposition , 2022, Sensors and Materials.

[4]  Jingyang Wang,et al.  Preparation, Microstructures and Mechanical Properties of Directionally Solidified Al 2 O 3 /Lu 3 Al 5 O 12 Eutectic Ceramics , 2021, International Journal of Applied Ceramic Technology.

[5]  A. Minamino,et al.  Photo- and Radioluminescence Properties of Ce3+-doped Lu3Al5O12 Thick Film Grown by Chemical Vapor Deposition , 2021, Sensors and Materials.

[6]  A. Ito,et al.  Preparation of HfO2–Al2O3 nanocomposite films using chemical vapor deposition , 2021, Journal of the Ceramic Society of Japan.

[7]  Y. Yokota,et al.  Development of large size crystal growth technology of oxide eutectic scintillator and a proto-type Talbot–Lau imaging system , 2020, Japanese Journal of Applied Physics.

[8]  M. Nikl,et al.  Liquid phase epitaxy growth of high-performance composite scintillators based on single crystalline films and crystals of LuAG , 2020 .

[9]  A. Ito,et al.  Chemical vapor deposition route to transparent thick films of Eu3+-doped HfO2 and Lu2O3 for luminescent phosphors , 2020 .

[10]  Jiuping Zhong,et al.  Microstructure and luminescence properties of a Ce3+-doped Lu3Al5O12/Al2O3 eutectic grown by the micropulling down method , 2019, Journal of Alloys and Compounds.

[11]  K. Paprocki,et al.  Composite scintillators based on the crystals and single crystalline films of LuAG garnet doped with Ce3+, Pr3+ and Sc3+ ions , 2018, Optical Materials.

[12]  V. Chani,et al.  Growth and characterization of directionally solidified eutectic systems for scintillator applications , 2018, Journal of Crystal Growth.

[13]  Takuya Furuta,et al.  Features of Particle and Heavy Ion Transport code System (PHITS) version 3.02 , 2018 .

[14]  K. Blažek,et al.  Development of LuAG-based scintillator crystals – A review , 2013 .

[15]  Y. Yokota,et al.  Submicron-diameter phase-separated scintillator fibers for high-resolution X-ray imaging , 2013 .

[16]  Fujio Izumi,et al.  VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data , 2011 .

[17]  H. Fu,et al.  Microstructure, growth mechanism and mechanical property of Al2O3-based eutectic ceramic in situ composites , 2011 .

[18]  T. Goto,et al.  Texture and orientation characteristics of α-Al2O3 films prepared by laser chemical vapor deposition using Nd:YAG laser , 2010 .

[19]  T. Szczesniak,et al.  Comparative studies of Lu3Al5O12:Ce and Y3Al5O12:Ce scintillators for gamma‐ray detection , 2009 .

[20]  H. Fu,et al.  A modified preparation technique and characterization of directionally solidified Al2O3/Y3Al5O12 eutectic in situ composites , 2009 .

[21]  J. Tous,et al.  The α-particle excited scintillation response of the liquid phase epitaxy grown LuAG:Ce thin films , 2008 .

[22]  Y. Waku,et al.  Fracture and deformation behaviour of melt growth composites at very high temperatures , 2001 .

[23]  M. Martini,et al.  Traps and Timing Characteristics of LuAG:Ce3+ Scintillator , 2000 .

[24]  Y. Waku,et al.  The Creep and Thermal Stability Characteristics of a Unidirectionally Solidified Al2O3/YAG Eutectic Composite , 1998 .

[25]  M. Moszynski,et al.  Investigation of some scintillation properties of YAG:Ce crystals☆ , 1997 .

[26]  K. Shimizu,et al.  A ductile ceramic eutectic composite with high strength at 1,873 K , 1997, Nature.

[27]  A. Burger,et al.  Optical and Scintillation Properties of Ce3+‐Doped LuAG and YAG Transparent Ceramics: A Comparative Study , 2017 .

[28]  T. Goto,et al.  Preparation of Al2O3–ZrO2 nanocomposite films by laser chemical vapour deposition , 2014 .

[29]  P. Dorenbos,et al.  Non-proportionality in the scintillation response and the energy resolution obtainable with scintill , 1995 .