Polytopes from Subgraph Statistics

Polytopes from subgraph statistics are important in applications and conjectures and theorems in extremal graph theory can be stated as properties of them. We have studied them with a view towards applications by inscribing large explicit polytopes and semi-algebraic sets when the facet descriptions are intractable. The semi-algebraic sets called curvy zonotopes are introduced and studied using graph limits. From both volume calculations and algebraic descriptions we find several interesting conjectures.

[1]  J. Schur,et al.  Über die Darstellung der symmetrischen und der alternierenden Gruppe durch gebrochene lineare Substitutionen. , 1911 .

[2]  L. Shapley,et al.  Geometry of Moment Spaces , 1953 .

[3]  B. Bollobás,et al.  Extremal Graph Theory , 2013 .

[4]  D. Aldous Representations for partially exchangeable arrays of random variables , 1981 .

[5]  L. Hörmander,et al.  The Analysis of Linear Partial Differential Operators I: Distribution Theory and Fourier Analysis , 1983 .

[6]  Bruce E. Sagan,et al.  The symmetric group - representations, combinatorial algorithms, and symmetric functions , 2001, Wadsworth & Brooks / Cole mathematics series.

[7]  G. Ziegler Lectures on Polytopes , 1994 .

[8]  Alan M. Frieze,et al.  Quick Approximation to Matrices and Applications , 1999, Comb..

[9]  Alexander Barvinok,et al.  A course in convexity , 2002, Graduate studies in mathematics.

[10]  P. McMullen A COURSE IN CONVEXITY (Graduate Studies in Mathematics 54) By ALEXANDER BARVINOK: 366 pp., US$59.00, ISBN 0-8218-2968-8 (American Mathematical Society, Providence, RI, 2002) , 2003 .

[11]  B. Sturmfels,et al.  Combinatorial Commutative Algebra , 2004 .

[12]  O. Kallenberg Probabilistic Symmetries and Invariance Principles , 2005 .

[13]  László Lovász,et al.  Limits of dense graph sequences , 2004, J. Comb. Theory B.

[14]  S. Ole Warnaar,et al.  The importance of the Selberg integral , 2007, 0710.3981.

[15]  Vladimir Nikiforov,et al.  The number of cliques in graphs of given order and size , 2007, 0710.2305.

[16]  Garry Robins,et al.  An introduction to exponential random graph (p*) models for social networks , 2007, Soc. Networks.

[17]  Alexander A. Razborov,et al.  On the Minimal Density of Triangles in Graphs , 2008, Combinatorics, Probability and Computing.

[18]  R. A. R. A Z B O R O V On the minimal density of triangles in graphs , 2008 .

[19]  P. Diaconis,et al.  Graph limits and exchangeable random graphs , 2007, 0712.2749.

[20]  A. Rinaldo,et al.  On the geometry of discrete exponential families with application to exponential random graph models , 2008, 0901.0026.

[21]  Bernd Sturmfels,et al.  On the convex hull of a space curve , 2009, ArXiv.

[22]  Bernd Sturmfels,et al.  The Convex Hull of a Variety , 2010, ArXiv.

[23]  P. Forrester Log-Gases and Random Matrices , 2010 .

[24]  David Aldous,et al.  Exchangeability and Continuum Limits of Discrete Random Structures , 2011 .