Selective Photostimulation of Genetically ChARGed Neurons

[1]  K. Kirschfeld,et al.  Chemical identity of the chromophores of fly visual pigment , 1984, Naturwissenschaften.

[2]  Michael J. Sailor,et al.  Remodeling of Synaptic Actin Induced by Photoconductive Stimulation , 2001, Cell.

[3]  Yasushi Miyashita,et al.  Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons , 2001, Nature Neuroscience.

[4]  Roger C. Hardie,et al.  Visual transduction in Drosophila , 2001, Nature.

[5]  勇一 作村,et al.  Biophysics of Computation , 2001 .

[6]  B. Zemelman,et al.  Genetic schemes and schemata in neurophysiology , 2001, Current Opinion in Neurobiology.

[7]  D. Baylor,et al.  Activation, deactivation, and adaptation in vertebrate photoreceptor cells. , 2001, Annual review of neuroscience.

[8]  K. Holthoff,et al.  Synapto-pHluorins: chimeras between pH-sensitive mutants of green fluorescent protein and synaptic vesicle membrane proteins as reporters of neurotransmitter release. , 2000, Methods in enzymology.

[9]  A. Huber,et al.  A Novel Gγ Isolated from Drosophila Constitutes a Visual G Protein γ Subunit of the Fly Compound Eye* , 1999, The Journal of Biological Chemistry.

[10]  F. Crick,et al.  The impact of molecular biology on neuroscience. , 1999, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[11]  C. Montell,et al.  Visual transduction in Drosophila. , 1999, Annual review of cell and developmental biology.

[12]  Charles S. Zuker,et al.  Assembly of the Drosophila phototransduction cascade into a signalling complex shapes elementary responses , 1998, Nature.

[13]  C. Zuker,et al.  Lights out: deactivation of the phototransduction cascade. , 1997, Trends in biochemical sciences.

[14]  T. Molinski,et al.  Xestospongins: Potent Membrane Permeable Blockers of the Inositol 1,4,5-Trisphosphate Receptor , 1997, Neuron.

[15]  George J Augustine,et al.  Chemical Two-Photon Uncaging: a Novel Approach to Mapping Glutamate Receptors , 1997, Neuron.

[16]  P. Sigler,et al.  Structural aspects of heterotrimeric G-protein signaling. , 1997, Current opinion in biotechnology.

[17]  Emiko Suzuki,et al.  A multivalent PDZ-domain protein assembles signalling complexes in a G-protein-coupled cascade , 1997, Nature.

[18]  A. Kiselev,et al.  Studies of Rh1 metarhodopsin stabilization in wild-type Drosophila and in mutants lacking one or both arrestins. , 1997, Biochemistry.

[19]  Peter J. Schaap,et al.  Molecular characterization of the , 1997 .

[20]  A. Gobert,et al.  The transient receptor potential protein (Trp), a putative store‐operated Ca2+ channel essential for phosphoinositide‐mediated photoreception, forms a signaling complex with NorpA, InaC and InaD. , 1996, The EMBO journal.

[21]  H. Hamm,et al.  Heterotrimeric G proteins. , 1996, Current opinion in cell biology.

[22]  D. O'Leary,et al.  Labeling Neural Cells Using Adenoviral Gene Transfer of Membrane-Targeted GFP , 1996, Neuron.

[23]  P. Fromherz,et al.  Silicon-Neuron Junction: Capacitive Stimulation of an Individual Neuron on a Silicon Chip. , 1995, Physical review letters.

[24]  C. Stevens,et al.  Arrestin binding determines the rate of inactivation of the G protein-coupled receptor rhodopsin in vivo , 1995, Cell.

[25]  T. Leslie Youd,et al.  Structural Aspects , 1995 .

[26]  E. Neer Heterotrimeric C proteins: Organizers of transmembrane signals , 1995, Cell.

[27]  B. Niemeyer,et al.  A novel protein encoded by the inad gene regulates recovery of visual transduction in drosophila , 1995, Neuron.

[28]  A. Kiselev,et al.  Activation and regeneration of rhodopsin in the insect visual cycle. , 1994, Science.

[29]  Thomas M. McKenna,et al.  Enabling Technologies for Cultured Neural Networks , 1994 .

[30]  M. Dalva,et al.  Rearrangements of synaptic connections in visual cortex revealed by laser photostimulation. , 1994, Science.

[31]  W. Denk,et al.  Two-photon scanning photochemical microscopy: mapping ligand-gated ion channel distributions. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[32]  E. Callaway,et al.  Photostimulation using caged glutamate reveals functional circuitry in living brain slices. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[33]  H. Khorana,et al.  Light‐induced currents in Xenopus oocytes expressing bovine rhodopsin. , 1993, The Journal of physiology.

[34]  B. Minke,et al.  Regulatory arrestin cycle secures the fidelity and maintenance of the fly photoreceptor cell. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[35]  R. Rando MOLECULAR MECHANISMS IN VISUAL PIGMENT REGENERATION , 1992, Photochemistry and photobiology.

[36]  J. Tytgat,et al.  Subunit stoichiometry of a mammalian K+ channel determined by construction of multimeric cDNAs , 1992, Neuron.

[37]  L. Kelly,et al.  Identification of a Drosophila gene encoding a calmodulin-binding protein with homology to the trp phototransduction gene , 1992, Neuron.

[38]  R. Hardie,et al.  The trp gene is essential for a light-activated Ca2+ channel in Drosophila photoreceptors , 1992, Neuron.

[39]  C. Stevens,et al.  A Drosophila mutant defective in extracellular calcium-dependent photoreceptor deactivation and rapid desensitization , 1991, Nature.

[40]  Roger C. Hardie,et al.  Whole-cell recordings of the light induced current in dissociated Drosophila photoreceptors: evidence for feedback by calcium permeating the light-sensitive channels , 1991, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[41]  J. Hurley,et al.  A Gβ protein in the drosophila compound eye is different from that in the brain , 1991, Neuron.

[42]  L. Stryer Visual excitation and recovery. , 1991, The Journal of biological chemistry.

[43]  R. Schmidt,et al.  Progress in Sensory Physiology , 1991, Progress in Sensory Physiology.

[44]  D. Hyde,et al.  dgq: A drosophila gene encoding a visual system-specific Gα molecule , 1990, Neuron.

[45]  C. Zuker,et al.  Isolation of a novel visual-system-specific arrestin: an in vivo substrate for light-dependent phosphorylation , 1990, Mechanisms of Development.

[46]  William T. Newsome,et al.  Cortical microstimulation influences perceptual judgements of motion direction , 1990, Nature.

[47]  Y. Hotta,et al.  A 49-kilodalton phosphoprotein in the Drosophila photoreceptor is an arrestin homolog. , 1990, Science.

[48]  S. Benzer,et al.  Twenty Drosophila visual system cDNA clones: one is a homolog of human arrestin. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[49]  D. Hyde,et al.  dgq: a drosophila gene encoding a visual system-specific G alpha molecule. , 1990, Neuron.

[50]  David W. Tank,et al.  Sealing cultured invertebrate neurons to embedded dish electrodes facilitates long-term stimulation and recording , 1989, Journal of Neuroscience Methods.

[51]  H. Hirata [Phototransduction in invertebrate photoreceptors]. , 1989, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.

[52]  G. Rubin,et al.  Molecular characterization of the drosophila trp locus: A putative integral membrane protein required for phototransduction , 1989, Neuron.

[53]  C. Zuker,et al.  The ninaA gene required for visual transduction in Drosophila encodes a homologue of cyclosporin A-binding protein , 1989, Nature.

[54]  R. Llinás The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. , 1988, Science.

[55]  H. Khorana,et al.  Expression of a bovine rhodopsin gene in Xenopus oocytes: demonstration of light-dependent ionic currents. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[56]  B. T. Bloomquist,et al.  Isolation of a putative phospholipase c gene of drosophila, norpA, and its role in phototransduction , 1988, Cell.

[57]  G. Rubin,et al.  Ectopic expression of a minor Drosophila opsin in the major photoreceptor cell class: Distinguishing the role of primary receptor and cellular context , 1988, Cell.

[58]  T. Yoshioka,et al.  A genetic study of inositol trisphosphate involvement in phototransduction using Drosophila mutants. , 1985, Biochemical and biophysical research communications.

[59]  D. McCormick,et al.  Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. , 1985, Journal of neurophysiology.

[60]  Richard L. Martin,et al.  The Drosophila ninaE gene encodes an opsin , 1985, Cell.

[61]  G. Rubin,et al.  Isolation and structure of a rhodopsin gene from D. melanogaster , 1985, Cell.

[62]  R. Hardie Functional Organization of the Fly Retina , 1985 .

[63]  A Grinvald,et al.  Identification of presynaptic neurons by laser photostimulation. , 1983, Science.

[64]  S. Hochstein,et al.  Transduction in invertebrate photoreceptors: role of pigment bistability. , 1983, Physiological reviews.

[65]  J. Pine Recording action potentials from cultured neurons with extracellular microcircuit electrodes , 1980, Journal of Neuroscience Methods.

[66]  B. Julesz Foundations of Cyclopean Perception , 1971 .

[67]  G. Wald The Molecular Basis of Visual Excitation , 1968, Nature.