The ABC of simulation estimation with auxiliary statistics

The frequentist method of simulated minimum distance (SMD) is widely used in economics to estimate complex models with an intractable likelihood. In other disciplines, a Bayesian approach known as Approximate Bayesian Computation (ABC) is far more popular. This paper connects these two seemingly related approaches to likelihood-free estimation by means of a Reverse Sampler that uses both optimization and importance weighting to target the posterior distribution. Its hybrid features enable us to analyze an ABC estimate from the perspective of SMD. We show that an ideal ABC estimate can be obtained as a weighted average of a sequence of SMD modes, each being the minimizer of the deviations between the data and the model. This contrasts with the SMD, which is the mode of the average deviations. Using stochastic expansions, we provide a general characterization of frequentist estimators and those based on Bayesian computations including Laplace-type estimators. Their differences are illustrated using analytical examples and a simulation study of the dynamic panel model.

[1]  J. Florens,et al.  Efficient estimation of general dynamic models with a continuum of moment conditions , 2007 .

[2]  Aman Ullah,et al.  The second-order bias and mean squared error of nonlinear estimators , 1996 .

[3]  Yee Whye Teh,et al.  DR-ABC: Approximate Bayesian Computation with Kernel-Based Distribution Regression , 2016, ICML.

[4]  A. Gallant,et al.  Which Moments to Match? , 1995, Econometric Theory.

[5]  S. Sisson,et al.  A comparative review of dimension reduction methods in approximate Bayesian computation , 2012, 1202.3819.

[6]  Mark M. Tanaka,et al.  Sequential Monte Carlo without likelihoods , 2007, Proceedings of the National Academy of Sciences.

[7]  Stéphane Bonhomme,et al.  Robust priors in nonlinear panel data models , 2007 .

[8]  D. Balding,et al.  Approximate Bayesian computation in population genetics. , 2002, Genetics.

[9]  P. Donnelly,et al.  Inferring coalescence times from DNA sequence data. , 1997, Genetics.

[10]  Jean-Michel Marin,et al.  Approximate Bayesian computational methods , 2011, Statistics and Computing.

[11]  Nicholas G. Polson,et al.  MCMC maximum likelihood for latent state models , 2007 .

[12]  Dennis Kristensen,et al.  INDIRECT LIKELIHOOD INFERENCE , 2013 .

[13]  James G. MacKinnon,et al.  Approximate bias correction in econometrics , 1998 .

[14]  J. Geanakoplos,et al.  Generalized Instrumental Variables Estimation of Nonlinear Rational Expectations Models , 2007 .

[15]  Andrew Gelman,et al.  Handbook of Markov Chain Monte Carlo , 2011 .

[16]  D. Duffie,et al.  Simulated Moments Estimation of Markov Models of Asset Prices , 1990 .

[17]  Whitney K. Newey,et al.  Higher Order Properties of Gmm and Generalized Empirical Likelihood Estimators , 2003 .

[18]  Han Hong,et al.  Bayesian Indirect Inference and the ABC of GMM , 2015, 1512.07385.

[19]  K. Arrow,et al.  The New Palgrave Dictionary of Economics , 2020 .

[20]  S. Wood Statistical inference for noisy nonlinear ecological dynamic systems , 2010, Nature.

[21]  Denis Nekipelov,et al.  Approximation Properties of Laplace-Type Estimators , 2012 .

[22]  C. Robert,et al.  Inference in generative models using the Wasserstein distance , 2017, 1701.05146.

[23]  Elvezio Ronchetti,et al.  Robust Indirect Inference , 2003 .

[24]  Christian Gourieroux,et al.  Indirect Inference for Dynamic Panel Models , 2006 .

[25]  Laurent E. Calvet,et al.  Accurate Methods for Approximate Bayesian Computation Filtering , 2015 .

[26]  Paul Marjoram,et al.  Markov chain Monte Carlo without likelihoods , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Yong Bao,et al.  The Second-Order Bias and Mean Squared Error of Estimators in Time Series Models , 2007 .

[28]  Cheng Hsiao,et al.  Analysis of Panel Data , 1987 .

[29]  N. Touzi,et al.  Calibrarion By Simulation for Small Sample Bias Correction , 1996 .

[30]  Efficient simulation-based minimum distance estimation and indirect inference , 2009, 0908.0433.

[31]  J. Robin,et al.  Matching, Sorting and Wages , 2008 .

[32]  C. Hansen,et al.  Bias Reduction for Bayesian and Frequentist Estimators , 2005 .

[33]  Gilles Celeux,et al.  Approximate Bayesian computation methods , 2012, Statistics and Computing.

[34]  Han Hong,et al.  A Computational Implementation of GMM , 2014 .

[35]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[36]  M. Feldman,et al.  Population growth of human Y chromosomes: a study of Y chromosome microsatellites. , 1999, Molecular biology and evolution.

[37]  L. Hansen Large Sample Properties of Generalized Method of Moments Estimators , 1982 .

[38]  V. Chernozhukov,et al.  An MCMC approach to classical estimation , 2003 .

[39]  Anthony A. Smith,et al.  Estimating Nonlinear Time-Series Models Using Simulated Vector Autoregressions , 1993 .

[40]  Joseph V. Roberti The Indirect Method , 1987 .

[41]  Sumeetpal S. Singh,et al.  Parameter Estimation for Hidden Markov Models with Intractable Likelihoods , 2011 .

[42]  Jean-Jacques Forneron,et al.  A Likelihood-Free Reverse Sampler of the Posterior Distribution , 2015, 1506.04017.

[43]  K. Heggland,et al.  Estimating functions in indirect inference , 2004 .

[44]  Wenxin Jiang,et al.  The Indirect Method: Inference Based on Intermediate Statistics—A Synthesis and Examples , 2004 .

[45]  A. Pettitt,et al.  Approximate Bayesian computation using indirect inference , 2011 .

[46]  Anthony N. Pettitt,et al.  Bayesian indirect inference using a parametric auxiliary model , 2015, 1505.03372.

[47]  S. Sisson,et al.  Likelihood-free Markov chain Monte Carlo , 2010, 1001.2058.

[48]  Jean-David Fermanian,et al.  A NONPARAMETRIC SIMULATED MAXIMUM LIKELIHOOD ESTIMATION METHOD , 2004, Econometric Theory.

[49]  Max Welling,et al.  Optimization Monte Carlo: Efficient and Embarrassingly Parallel Likelihood-Free Inference , 2015, NIPS.

[50]  Christian Gourieroux,et al.  Simulation-based econometric methods , 1996 .

[51]  L. Tierney,et al.  Accurate Approximations for Posterior Moments and Marginal Densities , 1986 .

[52]  Serena Ng,et al.  Estimating the rational expectations model of speculative storage: A Monte Carlo comparison of three simulation estimators , 2000 .

[53]  Luisa Turrin Fernholz,et al.  Target estimation for bias and mean square error reduction , 1999 .