Accurate 3D quantum reactive probabilities of Li+FH

Abstract Accurate three-dimensional quantum reactive scattering calculations have been carried out at zero total angular momentum ( J =0) for the “three-different-atom non-collinearly dominated” Li+HF reaction. The main features of the reactive probability for reactants in the ground vibrational state are discussed.

[1]  J. Harrison,et al.  The effect of reagent rotation on reactivity: Classical decoupling approximations , 1989 .

[2]  G. A. Parker,et al.  Quantum reactive scattering in three dimensions using hyperspherical (APH) coordinates. tests on H+H2 and D+H2 , 1987 .

[3]  I. Noorbatcha,et al.  Vibrational threshold equal to the barrier height for an endothermic reaction: Li+FH→LiF+H on an ab initio potential‐energy surface , 1982 .

[4]  Antonio Laganà,et al.  An improvement of the Li+HF PES based on a 3D quasiclassical trajectory test , 1986 .

[5]  J. N. Murrell,et al.  Analytical potentials for triatomic molecules: VII. Application to repulsive surfaces , 1980 .

[6]  R. Levine,et al.  A classical kinematic model for direct reactions of oriented reagents , 1987 .

[7]  M. Paniagua,et al.  A new functional form to obtain analytical potentials of triatomic molecules , 1992 .

[8]  A. Laganà,et al.  Direct versus indirect microscopic mechanisms in the Li HF reaction , 1986 .

[9]  J. Norman Bardsley,et al.  Nonequilibrium processes in partially ionized gases , 1990 .

[10]  Antonio Laganà,et al.  Improved infinite order sudden cross sections for the Li+HF reaction , 1988 .

[11]  I. Noorbatcha,et al.  Effect of the initial orientation on the reaction attributes for Li + FH → Lif + H on an AB initio surface , 1982 .

[12]  G. A. Parker,et al.  Quantum reactive scattering in three dimensions using hyperspherical (APH) coordinates. Theory , 1987 .

[13]  A. Laganà,et al.  Quasi-classical versus quantum calculations for the collinear Li + FH reaction , 1984 .

[14]  I. Noorbatcha,et al.  Dynamics of a prototype alkali-hydrogen-halide exchange reaction on an ab initio potential-energy surface , 1983 .

[15]  H. Loesch,et al.  Huge steric effect in the reaction Li+HF(v=1, j=1)→LiF+H , 1991 .

[16]  Gregory A. Parker,et al.  Quantum reactive scattering in three dimensions using hyperspherical (APH) coordinates. VI. Analytic basis method for surface functions , 1993 .

[17]  E. Garcia,et al.  A fit of the potential energy surface of the LiHF system , 1984 .

[18]  A. Laganà,et al.  A quantum mechanical collinear study of the reactions Li + FX → LiF + X (X = H, D, T) , 1982 .

[19]  Henry F. Schaefer,et al.  Potential energy surface for the Li+HF. -->. LiF+H reaction , 1980 .

[20]  Christopher H. Becker,et al.  Study of the reaction dynamics of Li+HF, HCl by the crossed molecular beams method , 1980 .

[21]  Antonio Laganà,et al.  An approximate three-dimensional quantum-mechanical study of the Li+HF→LiF+H reaction , 1989 .

[22]  H. R. Mayne,et al.  Effect of reactant rotation on reactivity: comparison of exact coplanar results and a model calculation for atomic hydrogen + molecular hydrogen , 1987 .

[23]  H. R. Mayne,et al.  Effect of reagent rotation on bimolecular collisions: H + H2(j) , 1984 .

[24]  Antonio Laganà,et al.  Supercomputer algorithms for reactivity, dynamics and kinetics of small molecules , 1989 .

[25]  Antonio Laganà,et al.  A quasiclassical trajectory test for a potential energy surface of the Li+HF reaction , 1982 .

[26]  H. Loesch A sliding mass model to rationalize effects of reagent rotation on reaction cross sections , 1986 .

[27]  W. Miller,et al.  How to observe the elusive resonances in H or D + H2 → H2 or HD + H reactive scattering , 1991 .

[28]  A. Laganà,et al.  An approximate estimate of the Li+HF reactivity , 1987 .

[29]  B. R. Johnson The renormalized Numerov method applied to calculating bound states of the coupled‐channel Schroedinger equation , 1978 .

[30]  D. Clary Effect of rotational excitation on chemical reaction cross sections , 1983 .

[31]  Antonio Laganà,et al.  An accurate evaluation of the stationary points of the LiFH potential energy surface , 1989 .

[32]  Antonio Laganà,et al.  A bond-order LiFH potential energy surface for 3D quantum-mechanical calculations , 1988 .

[33]  B. R. Johnson New numerical methods applied to solving the one‐dimensional eigenvalue problem , 1977 .

[34]  N. Sathyamurthy Effect of reagent rotation on elementary bimolecular exchange reactions , 1983 .