Towards a framework for testing general relativity with extreme-mass-ratio-inspiral observations

Extreme-mass-ratio-inspiral observations from future space-based gravitational-wave detectors such as LISA will enable strong-field tests of general relativity with unprecedented precision, but at prohibitive computational cost if existing statistical techniques are used. In one such test that is currently employed for LIGO black-hole binary mergers, generic deviations from relativity are represented by $N$ deformation parameters in a generalised waveform model; the Bayesian evidence for each of its $2^N$ combinatorial submodels is then combined into a posterior odds ratio for modified gravity over relativity in a null-hypothesis test. We adapt and apply this test to a generalised model for extreme-mass-ratio inspirals constructed on deformed black-hole spacetimes, and focus our investigation on how computational efficiency can be increased through an evidence-free method of model selection. This method is akin to the algorithm known as product-space Markov chain Monte Carlo, but uses nested sampling and improved error estimates from a rethreading technique. We perform benchmarking and robustness checks for the method, and find order-of-magnitude computational gains over regular nested sampling in the case of synthetic data generated from the null model.

[1]  Xiao-Li Meng,et al.  Simulating Normalizing Constants: From Importance Sampling to Bridge Sampling to Path Sampling , 1998 .

[2]  Dean Phillips Foster,et al.  Calibration and empirical Bayes variable selection , 2000 .

[3]  Bernard F. Schutz,et al.  Low-frequency gravitational-wave science with eLISA/NGO , 2012, 1202.0839.

[4]  James G. Scott,et al.  Bayes and empirical-Bayes multiplicity adjustment in the variable-selection problem , 2010, 1011.2333.

[5]  L. G. Boté,et al.  Laser Interferometer Space Antenna , 2012 .

[6]  L. Tierney,et al.  Accurate Approximations for Posterior Moments and Marginal Densities , 1986 .

[7]  Eric-Jan Wagenmakers,et al.  An encompassing prior generalization of the Savage-Dickey density ratio , 2010, Comput. Stat. Data Anal..

[8]  Angular resolution of the LISA gravitational wave detector , 1997, gr-qc/9703068.

[9]  F. Feroz,et al.  Use of the MULTINEST algorithm for gravitational wave data analysis , 2009, 0904.1544.

[10]  C. Broeck,et al.  TIGER: A data analysis pipeline for testing the strong-field dynamics of general relativity with gravitational wave signals from coalescing compact binaries , 2013, 1311.0420.

[11]  J. Gair,et al.  Gravitational waves from extreme mass ratio inspirals around bumpy black holes , 2017, 1707.00712.

[12]  B. A. Boom,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. , 2017, Physical review letters.

[13]  A. Vecchio,et al.  Bayesian coherent analysis of in-spiral gravitational wave signals with a detector network , 2009, 0911.3820.

[14]  X. Siemens,et al.  Gravitational-Wave Tests of General Relativity with Ground-Based Detectors and Pulsar-Timing Arrays , 2013, Living reviews in relativity.

[15]  Bernard F. Schutz,et al.  Doing Science with eLISA: Astrophysics and Cosmology in the Millihertz Regime , 2012, 1201.3621.

[16]  A. Lommen Pulsar timing arrays: the promise of gravitational wave detection , 2015, Reports on progress in physics. Physical Society.

[17]  J. Forster,et al.  The Whetstone and the Alum Block: Balanced Objective Bayesian Comparison of Nested Models for Discrete Data , 2013, 1310.0661.

[18]  B. A. Boom,et al.  GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. , 2017, Physical review letters.

[19]  F. Pretorius,et al.  Fundamental theoretical bias in gravitational wave astrophysics and the parametrized post-Einsteinian framework , 2009, 0909.3328.

[20]  Edward Higson,et al.  Dynamic nested sampling: an improved algorithm for parameter estimation and evidence calculation , 2017, Statistics and Computing.

[21]  B. A. Boom,et al.  Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background. , 2018, Physical review letters.

[22]  S. Walker,et al.  An Objective Bayesian Criterion to Determine Model Prior Probabilities , 2015 .

[23]  M. P. Hobson,et al.  Importance Nested Sampling and the MultiNest Algorithm , 2013, The Open Journal of Astrophysics.

[24]  J. Mathews,et al.  Gravitational radiation from point masses in a Keplerian orbit , 1963 .

[25]  F. Feroz,et al.  MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics , 2008, 0809.3437.

[26]  Anthony N. Lasenby,et al.  Bayesian model selection without evidences: application to the dark energy equation-of-state , 2015, 1506.09024.

[27]  Jean-Michel Marin,et al.  On resolving the Savage–Dickey paradox , 2009, 0910.1452.

[28]  Michael Purrer,et al.  Parametrized tests of the strong-field dynamics of general relativity using gravitational wave signals from coalescing binary black holes: Fast likelihood calculations and sensitivity of the method , 2017, 1712.08772.

[29]  A. Lasenby,et al.  polychord: next-generation nested sampling , 2015, 1506.00171.

[30]  G. Schäfer,et al.  Binary systems: higher order gravitational radiation damping and wave emission , 1992 .

[31]  Using LISA extreme-mass-ratio inspiral sources to test off-Kerr deviations in the geometry of massive black holes , 2006, gr-qc/0612029.

[32]  N. Yunes,et al.  Bumpy black holes in alternative theories of gravity , 2011, 1102.3706.

[33]  Curt Cutler,et al.  LISA capture sources: Approximate waveforms, signal-to-noise ratios, and parameter estimation accuracy , 2003, gr-qc/0310125.

[34]  Cambridge,et al.  Gravitational wave parameter estimation with compressed likelihood evaluations , 2013, 1304.0462.

[35]  Shane L. Larson,et al.  Testing General Relativity with Low-Frequency, Space-Based Gravitational-Wave Detectors , 2012, Living reviews in relativity.

[36]  J. Gair,et al.  Augmented kludge waveforms for detecting extreme-mass-ratio inspirals , 2017, 1705.04259.

[37]  P. Puppo,et al.  Status of advanced ground-based laser interferometers for gravitational-wave detection , 2014, 1411.6068.

[38]  Celestial mechanics in Kerr spacetime , 2002, gr-qc/0202090.

[39]  L. M. M.-T. Theory of Probability , 1929, Nature.

[40]  S. Chib Marginal Likelihood from the Gibbs Output , 1995 .

[41]  D Huet,et al.  Tests of General Relativity with GW150914. , 2016, Physical review letters.

[42]  S. Hughes Evolution of circular, nonequatorial orbits of Kerr black holes due to gravitational-wave emission. II. Inspiral trajectories and gravitational waveforms , 2000, gr-qc/0104041.

[43]  Thorne,et al.  Spin-induced orbital precession and its modulation of the gravitational waveforms from merging binaries. , 1994, Physical review. D, Particles and fields.

[44]  Tom Lodewyckx,et al.  A tutorial on Bayes factor estimation with the product space method , 2011 .

[45]  Scott A. Sisson,et al.  Transdimensional Markov Chains , 2005 .

[46]  F. Pretorius,et al.  Theoretical Physics Implications of the Binary Black-Hole Mergers GW150914 and GW151226 , 2016, 1603.08955.

[47]  H. Jeffreys A Treatise on Probability , 1922, Nature.

[48]  B. A. Boom,et al.  First Search for Nontensorial Gravitational Waves from Known Pulsars. , 2017, Physical review letters.

[49]  C. Broeck,et al.  Towards a generic test of the strong field dynamics of general relativity using compact binary coalescence: Further investigations , 2011, 1111.5274.

[50]  J. Skilling Nested sampling for general Bayesian computation , 2006 .

[51]  J. Gair,et al.  Testing the \no-hair" property of black holes with X-ray observations of accretion disks , 2015, 1507.02998.

[52]  S. Godsill On the Relationship Between Markov chain Monte Carlo Methods for Model Uncertainty , 2001 .

[53]  R. F. O’Connell,et al.  Gravitational two-body problem with arbitrary masses, spins, and quadrupole moments , 1975 .

[54]  Towards a formalism for mapping the spacetimes of massive compact objects: Bumpy black holes and their orbits , 2004, gr-qc/0402063.

[55]  E. Phinney,et al.  Event Rate Estimates for LISA Extreme Mass Ratio Capture Sources , 2004, gr-qc/0405137.

[56]  S. Hughes,et al.  Spacetimes and orbits of Bumpy Black Holes , 2009, 0911.1756.

[57]  L. Wasserman,et al.  Computing Bayes Factors Using a Generalization of the Savage-Dickey Density Ratio , 1995 .

[58]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[59]  M. P. Hobson,et al.  polychord: nested sampling for cosmology , 2015, Monthly Notices of the Royal Astronomical Society: Letters.

[60]  Flanagan,et al.  Gravitational waves from merging compact binaries: How accurately can one extract the binary's parameters from the inspiral waveform? , 1994, Physical review. D, Particles and fields.

[61]  J. Gair,et al.  Improved analytic extreme-mass-ratio inspiral model for scoping out eLISA data analysis , 2015, 1510.06245.

[62]  J. Gair,et al.  Science with the space-based interferometer LISA. V: Extreme mass-ratio inspirals , 2017, 1703.09722.

[63]  B. A. Boom,et al.  GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence , 2017, 1711.05578.

[64]  Radford M. Neal Annealed importance sampling , 1998, Stat. Comput..

[65]  J. Gair,et al.  Approximate Waveforms for Extreme-Mass-Ratio Inspirals in Modified Gravity Spacetimes , 2011, 1106.6313.

[66]  Michael Purrer,et al.  Frequency-domain gravitational waves from nonprecessing black-hole binaries. II. A phenomenological model for the advanced detector era , 2015, 1508.07253.

[67]  S. Babak,et al.  Mapping spacetimes with LISA: inspiral of a test body in a ‘quasi-Kerr’ field , 2005, gr-qc/0510057.

[68]  M. Francaviglia,et al.  Remarks on certain separability structures and their applications to general relativity , 1979 .

[69]  M. P. Hobson,et al.  Diagnostic Tests for Nested Sampling Calculations , 2018 .

[70]  B. A. Boom,et al.  GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. , 2017, Physical review letters.