Hypothesis Generation in Climate Research with Interactive Visual Data Exploration

One of the most prominent topics in climate research is the investigation, detection, and allocation of climate change. In this paper, we aim at identifying regions in the atmosphere (e.g., certain height layers) which can act as sensitive and robust indicators for climate change. We demonstrate how interactive visual data exploration of large amounts of multi-variate and time-dependent climate data enables the steered generation of promising hypotheses for subsequent statistical evaluation. The use of new visualization and interaction technology-in the context of a coordinated multiple views framework-allows not only to identify these promising hypotheses, but also to efficiently narrow down parameters that are required in the process of computational data analysis. Two datasets, namely an ECHAM5 climate model run and the ERA-40 reanalysis incorporating observational data, are investigated. Higher-order information such as linear trends or signal-to-noise ratio is derived and interactively explored in order to detect and explore those regions which react most sensitively to climate change. As one conclusion from this study, we identify an excellent potential for usefully generalizing our approach to other, similar application cases, as well.

[1]  Michael Mayer,et al.  Case study: visual analysis of complex, time-dependent simulation results of a diesel exhaust system , 2004, VISSYM'04.

[2]  W. Briggs Statistical Methods in the Atmospheric Sciences , 2007 .

[3]  Matthew D. Cooper,et al.  Revealing Structure within Clustered Parallel Coordinates Displays , 2005, INFOVIS.

[4]  Eugene C. Cordero,et al.  Stratospheric variability and trends in models used for the IPCC AR4 , 2006 .

[5]  Helwig Hauser,et al.  Interactive Feature Specification for Focus+Context Visualization of Complex Simulation Data , 2003, VisSym.

[6]  Helwig Hauser,et al.  Generalizing Focus+Context Visualization , 2006 .

[7]  John W. Tukey,et al.  Exploratory Data Analysis. , 1979 .

[8]  Heidrun Schumann,et al.  Visualisierung - Grundlagen und allgemeine Methoden , 2000 .

[9]  Helmut Doleisch,et al.  SimVis: An Interactive Visual Field Exploration Tool Applied to Climate Research , 2009 .

[10]  G. W. Furnas,et al.  Generalized fisheye views , 1986, CHI '86.

[11]  Matthew O. Ward,et al.  XmdvTool: integrating multiple methods for visualizing multivariate data , 1994, Proceedings Visualization '94.

[12]  James J. Thomas,et al.  Defining Insight for Visual Analytics , 2009, IEEE Computer Graphics and Applications.

[13]  Corinne Le Quéré,et al.  Climate Change 2013: The Physical Science Basis , 2013 .

[14]  Jitendra Malik,et al.  PointCloudXplore: Visual Analysis of 3D Gene Expression Data Using Physical Views and Parallel Coordinates , 2006, EuroVis.

[15]  Helwig Hauser,et al.  Outlier-Preserving Focus+Context Visualization in Parallel Coordinates , 2006, IEEE Transactions on Visualization and Computer Graphics.

[16]  Hans Hagen,et al.  Visual analysis and exploration of fluid flow in a cooling jacket , 2005, VIS 05. IEEE Visualization, 2005..

[17]  Robert Sausen,et al.  Identification of anthropogenic climate change using a second-generation reanalysis , 2004 .

[18]  Luis Kornblueh,et al.  The atmospheric general circulation model ECHAM5 Part II: Sensitivity of simulated climate to horizontal and vertical resolution , 2004 .

[19]  Lennart Bengtsson,et al.  An observing system simulation experiment for climate monitoring with GNSS radio occultation data: Setup and test bed study , 2008 .

[20]  Bernhard Preim,et al.  A Four‐level Focus+Context Approach to Interactive Visual Analysis of Temporal Features in Large Scientific Data , 2008, Comput. Graph. Forum.

[21]  Helwig Hauser,et al.  Smooth Brushing for Focus+Context Visualization of Simulation Data in 3D , 2002, WSCG.

[22]  W. G. Melbourne,et al.  The application of spaceborne GPS to atmospheric limb sounding and global change monitoring , 1994 .

[23]  Gottfried Kirchengast,et al.  Trend Indicators of Atmospheric Climate Change Based on Global Climate Model Scenarios , 2009 .

[24]  Jonathan C. Roberts,et al.  Exploratory Visualization with Multiple Linked Views , 2004 .

[25]  J. Wallace,et al.  Atmospheric Science: An Introductory Survey , 1977 .

[26]  Ecmwf Newsletter,et al.  EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS , 2004 .