Learn from the Past : Improving Model-Directed Optimization by Transfer Learning Based on Distance-Based Bias

For many optimization problems it is possible to define a problem-specific distance metric over decision variables that correlates with the strength of interactions between the variables. Examples of such problems include additively decomposable functions, facility location problems, and atomic cluster optimization. However, the use of such a metric for enhancing efficiency of optimization techniques is often not straightforward. This paper describes a framework that allows optimization practitioners to improve efficiency of model-directed optimization techniques by combining such a distance metric with information mined from previous optimization runs on similar problems. The framework is demonstrated and empirically evaluated in the context of the hierarchical Bayesian optimization algorithm (hBOA). Experimental results provide strong empirical evidence that the proposed approach provides significant speedups and that it can be effectively combined with other efficiency enhancements. The paper demonstrates how straightforward it is to adapt the proposed framework to other model-directed optimization techniques by presenting several examples.

[1]  Dirk Thierens,et al.  On Measures to Build Linkage Trees in LTGA , 2012, PPSN.

[2]  Roberto Santana,et al.  Structural transfer using EDAs: An application to multi-marker tagging SNP selection , 2012, 2012 IEEE Congress on Evolutionary Computation.

[3]  Martin Pelikan,et al.  Transfer Learning, Soft Distance-Based Bias, and the Hierarchical BOA , 2012, PPSN.

[4]  Martin Pelikan,et al.  Distance-based bias in model-directed optimization of additively decomposable problems , 2012, GECCO '12.

[5]  David E. Goldberg,et al.  Using Previous Models to Bias Structural Learning in the Hierarchical BOA , 2008, Evolutionary Computation.

[6]  Marjan Kaedi,et al.  Biasing Bayesian Optimization Algorithm using Case Based Reasoning , 2011, Knowl. Based Syst..

[7]  Martin Pelikan,et al.  An introduction and survey of estimation of distribution algorithms , 2011, Swarm Evol. Comput..

[8]  Dirk Thierens,et al.  Pairwise and problem-specific distance metrics in the linkage tree genetic algorithm , 2011, GECCO '11.

[9]  Dirk Thierens,et al.  The Linkage Tree Genetic Algorithm , 2010, PPSN.

[10]  Dirk Thierens Linkage tree genetic algorithm: first results , 2010, GECCO '10.

[11]  Martin Pelikan NK landscapes, problem difficulty, and hybrid evolutionary algorithms , 2010, GECCO '10.

[12]  Martin Pelikan,et al.  Network crossover performance on NK landscapes and deceptive problems , 2010, GECCO '10.

[13]  Jiri Ocenasek,et al.  Parallel Estimation of Distribution Algorithms , 2010 .

[14]  David E. Goldberg,et al.  Dependency Structure Matrix, Genetic Algorithms, and Effective Recombination , 2009, Evolutionary Computation.

[15]  Martin Pelikan,et al.  Analyzing Probabilistic Models in Hierarchical BOA , 2009, IEEE Transactions on Evolutionary Computation.

[16]  Martin Pelikan,et al.  Intelligent bias of network structures in the hierarchical BOA , 2009, GECCO.

[17]  Martin Pelikan,et al.  Enhancing Efficiency of Hierarchical BOA Via Distance-Based Model Restrictions , 2008, PPSN.

[18]  David E. Goldberg,et al.  Enhancing the Efficiency of the ECGA , 2008, PPSN.

[19]  William Rand,et al.  CrossNet: a framework for crossover with network-based chromosomal representations , 2008, GECCO '08.

[20]  David E. Goldberg,et al.  Sporadic model building for efficiency enhancement of hierarchical BOA , 2006, GECCO.

[21]  Martin Pelikan,et al.  Hybrid evolutionary algorithms on minimum vertex cover for random graphs , 2007, GECCO '07.

[22]  Martin Pelikan,et al.  Scalable Optimization via Probabilistic Modeling: From Algorithms to Applications (Studies in Computational Intelligence) , 2006 .

[23]  J. A. Lozano,et al.  Towards a New Evolutionary Computation: Advances on Estimation of Distribution Algorithms (Studies in Fuzziness and Soft Computing) , 2006 .

[24]  Shumeet Baluja,et al.  Incorporating a priori Knowledge in Probabilistic-Model Based Optimization , 2006, Scalable Optimization via Probabilistic Modeling.

[25]  Pedro Larrañaga,et al.  Towards a New Evolutionary Computation - Advances in the Estimation of Distribution Algorithms , 2006, Towards a New Evolutionary Computation.

[26]  David E. Goldberg,et al.  Efficiency Enhancement of Estimation of Distribution Algorithms , 2006, Scalable Optimization via Probabilistic Modeling.

[27]  Robin Höns,et al.  Estimation of distribution algorithms and minimum relative entropy , 2005 .

[28]  Rich Caruana,et al.  Multitask Learning , 1997, Machine Learning.

[29]  David Maxwell Chickering,et al.  Learning Bayesian Networks: The Combination of Knowledge and Statistical Data , 1994, Machine Learning.

[30]  Gregory F. Cooper,et al.  A Bayesian method for the induction of probabilistic networks from data , 1992, Machine Learning.

[31]  Franz Rothlauf,et al.  Evaluation-Relaxation Schemes for Genetic and Evolutionary Algorithms , 2004 .

[32]  Martin Pelikan,et al.  Hierarchical Bayesian optimization algorithm: toward a new generation of evolutionary algorithms , 2010, SICE 2003 Annual Conference (IEEE Cat. No.03TH8734).

[33]  Heinz Mühlenbein,et al.  A Maximum Entropy Approach to Sampling in EDA ? The Single Connected Case , 2003, CIARP.

[34]  David E. Goldberg,et al.  Genetic Algorithm Design Inspired by Organizational Theory: Pilot Study of a Dependency Structure Matrix Driven Genetic Algorithm , 2003, GECCO.

[35]  David E. Goldberg,et al.  Hierarchical BOA Solves Ising Spin Glasses and MAXSAT , 2003, GECCO.

[36]  David E. Goldberg,et al.  A hierarchy machine: Learning to optimize from nature and humans , 2003, Complex..

[37]  Heinz Mühlenbein,et al.  Evolutionary optimization and the estimation of search distributions with applications to graph bipartitioning , 2002, Int. J. Approx. Reason..

[38]  David E. Goldberg,et al.  Scalability of the Bayesian optimization algorithm , 2002, Int. J. Approx. Reason..

[39]  Franz Rothlauf,et al.  Representations for genetic and evolutionary algorithms , 2002, Studies in Fuzziness and Soft Computing.

[40]  Zvi Drezner,et al.  Using hybrid metaheuristics for the one‐way and two‐way network design problem , 2002 .

[41]  David E. Goldberg,et al.  Bayesian Optimization Algorithm: From Single Level to Hierarchy , 2002 .

[42]  David E. Goldberg,et al.  A Survey of Optimization by Building and Using Probabilistic Models , 2002, Comput. Optim. Appl..

[43]  J. A. Lozano,et al.  Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation , 2001 .

[44]  D. Goldberg,et al.  Escaping hierarchical traps with competent genetic algorithms , 2001 .

[45]  Josef Schwarz,et al.  The Parallel Bayesian Optimization Algorithm , 2000 .

[46]  Thomas Stützle,et al.  SATLIB: An Online Resource for Research on SAT , 2000 .

[47]  Toby Walsh,et al.  Morphing: Combining Structure and Randomness , 1999, AAAI/IAAI.

[48]  G. Harik Linkage Learning via Probabilistic Modeling in the ECGA , 1999 .

[49]  David Maxwell Chickering,et al.  A Bayesian Approach to Learning Bayesian Networks with Local Structure , 1997, UAI.

[50]  Nir Friedman,et al.  Learning Bayesian Networks with Local Structure , 1996, UAI.

[51]  Georges R. Harik,et al.  Finding Multimodal Solutions Using Restricted Tournament Selection , 1995, ICGA.

[52]  Shumeet Baluja,et al.  A Method for Integrating Genetic Search Based Function Optimization and Competitive Learning , 1994 .

[53]  Jack Mostow,et al.  Direct Transfer of Learned Information Among Neural Networks , 1991, AAAI.

[54]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .