A comparison of five malaria transmission models: benchmark tests and implications for disease control

[1]  A. Githeko,et al.  A comparison of five malaria transmission models: benchmark tests and implications for disease control , 2014, Malaria Journal.

[2]  David M. Hartley,et al.  A systematic review of mathematical models of mosquito-borne pathogen transmission: 1970–2010 , 2013, Journal of The Royal Society Interface.

[3]  D. Korecha,et al.  A dynamic model of some malaria-transmitting anopheline mosquitoes of the Afrotropical region. II. Validation of species distribution and seasonal variations , 2013, Malaria Journal.

[4]  A. Tompkins,et al.  A regional-scale, high resolution dynamical malaria model that accounts for population density, climate and surface hydrology , 2013, Malaria Journal.

[5]  D. Korecha,et al.  A dynamic model of some malaria-transmitting anopheline mosquitoes of the Afrotropical region. I. Model description and sensitivity analysis , 2013, Malaria Journal.

[6]  Andrew P. Morse,et al.  Skill of ENSEMBLES seasonal re‐forecasts for malaria prediction in West Africa , 2012 .

[7]  David L. Smith,et al.  Ross, Macdonald, and a Theory for the Dynamics and Control of Mosquito-Transmitted Pathogens , 2012, PLoS pathogens.

[8]  P. Eckhoff A malaria transmission-directed model of mosquito life cycle and ecology , 2011, Malaria Journal.

[9]  S. Sinha,et al.  Mathematical models of malaria - a review , 2011, Malaria Journal.

[10]  J. Sotsky,et al.  CONTROL OF WEST NILE VIRUS BY INSECTICIDE IN THE PRESENCE OF AN AVIAN RESERVOIR , 2011 .

[11]  Andrew P. Morse,et al.  Development of a new version of the Liverpool Malaria Model. I. Refining the parameter settings and mathematical formulation of basic processes based on a literature review , 2011, Malaria Journal.

[12]  Andrew P. Morse,et al.  Application and validation of a seasonal ensemble prediction system using a dynamic malaria model. , 2010 .

[13]  B. Knols,et al.  Field site selection: getting it right first time around , 2009, Malaria Journal.

[14]  Jean-Bernard Duchemin,et al.  A mechanistic approach for accurate simulation of village scale malaria transmission , 2009, Malaria Journal.

[15]  Jean-Bernard Duchemin,et al.  Hydrology of malaria: Model development and application to a Sahelian village , 2008 .

[16]  NAKUL CHITNIS,et al.  Bifurcation Analysis of a Mathematical Model for Malaria Transmission , 2006, SIAM J. Appl. Math..

[17]  J. Dushoff,et al.  The entomological inoculation rate and Plasmodium falciparum infection in African children , 2005, Nature.

[18]  Andrew P. Morse,et al.  A weather-driven model of malaria transmission , 2004, Malaria Journal.

[19]  F. McKenzie,et al.  The role of mathematical modeling in evidence-based malaria control. , 2004, The American journal of tropical medicine and hygiene.

[20]  M. Vaillant,et al.  Relationship between entomological inoculation rate, Plasmodium falciparum prevalence rate, and incidence of malaria attack in rural Gabon. , 2003, Acta tropica.

[21]  K. Lindblade,et al.  Highland malaria in Uganda: prospective analysis of an epidemic associated with El Niño. , 1999, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[22]  G. Killeen,et al.  Short report: entomologic inoculation rates and Plasmodium falciparum malaria prevalence in Africa. , 1999, The American journal of tropical medicine and hygiene.

[23]  S. Lal,et al.  Epidemiology and control of malaria , 1999, Indian journal of pediatrics.

[24]  P. Kaye Infectious diseases of humans: Dynamics and control , 1993 .

[25]  P. R. Mondaini Biomat 2010 : International Symposium on Mathematical and Computational Biology, Rio de Janeiro, Brazil, 24-29 July 2010 , 2011 .