Subthermal photoproduct surface desorption distributions arising from excimer laser excitation of adsorbed trimethylaluminum

Excimer laser photolysis of adsorbed trimethylaluminum has been studied using a time of flight mass spectrometric technique. Methyl molecules are found to desorb with reasonable efficiency at 193 nm, but leave the surface with surprisingly small amounts of kinetic energy. Whereas, direct excitation of a single Al–C bond with a 6.4 eV photon would result in ∼3.5 eV of excess energy, only 0.025 eV is observed in translation experimentally. Maxwell–Boltzmann fits to these desorption distributions yield a temperature of ∼150 K even though desorption occurs from surfaces at room temperature. Possible interpretations of this result are discussed.

[1]  E. P. Marsh,et al.  Summary Abstract: Surface photofragmentation of physisorbed CH3Br on Ni(111) , 1987 .

[2]  E. P. Marsh,et al.  Laser photofragmentation and photodesorption of physisorbed CH3Br on lithium fluoride , 1987 .

[3]  Ho,et al.  Laser-surface adsorbate interactions: Thermal versus photoelectronic excitation of Mo(CO)6 on Si(111). , 1986, Physical review letters.

[4]  G. Higashi,et al.  Investigation of the surface photochemical basis for metal film nucleation in laser chemical vapor deposition , 1985 .

[5]  G. Higashi,et al.  Surface photochemical phenomena in laser chemical vapor deposition , 1985 .

[6]  G. Higashi,et al.  Vibrational spectroscopy of growth surfaces during photochemical deposition of aluminum from trimethylaluminum vapor , 1985 .

[7]  R. Osgood,et al.  Laser-Induced Chemistry for Microelectronics , 1985, Science.

[8]  J. Polanyi,et al.  UV photodissociation and photodesorption of adsorbed molecules. 1. Methyl bromide on lithium fluoride(001) , 1984 .

[9]  R. Jackman,et al.  Chemical vapour deposition on silicon: In situ surface studies , 1984 .

[10]  R. Osgood,et al.  An analytic theory of photodissociation of linear symmetric polyatomic molecules , 1984 .

[11]  Daniel J. Ehrlich,et al.  A review of laser–microchemical processing , 1983 .

[12]  D. Auerbach,et al.  Direct-inelastic and trapping-desorption scattering of N2 and CH4 from Pt(111) , 1983 .

[13]  G. Wedler,et al.  Laser induced thermal desorption of carbon monoxide from Fe(110) surfaces , 1982 .

[14]  J. Tully Dynamics of gas-surface interactions: Thermal desorption of Ar and Xe from platinum , 1981 .

[15]  D. Ehrlich,et al.  UV photolysis of van der waals molecular films , 1981 .

[16]  D. Ehrlich,et al.  Laser microphotochemistry for use in solid-state electronics , 1980 .

[17]  R. T. Pack Simple theory of diffuse vibrational structure in continuous uv spectra of polyatomic molecules. I. Collinear photodissociation of symmetric triatomics , 1976 .

[18]  M. Balooch,et al.  Detailed balancing and quasi-equilibrium in the adsorption of hydrogen on copper , 1975 .

[19]  J. R. Arthur,et al.  Velocity distributions of As2 and As4 scattered from GaAs , 1975 .

[20]  F. H. Hambleton,et al.  Surface structure and catalytic cracking properties of the SiO2BCl3, SiO2AlMe3, and SiO2AlCl3 systems: I. Infrared and analytical studies , 1971 .