Arbitrary High-Order Finite Element Schemes and High-Order Mass Lumping
暂无分享,去创建一个
[1] George J. Fix. EFFECTS OF QUADRATURE ERRORS IN FINITE ELEMENT APPROXIMATION OF STEADY STATE, EIGENVALUE AND PARABOLIC PROBLEMS , 1972 .
[2] W. A. Mulder,et al. A comparison between higher-order finite elements and finite differences for solving the wave equation , 1996 .
[3] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[4] J. Lambert. Numerical Methods for Ordinary Differential Equations , 1991 .
[5] Patrick Joly,et al. Higher-order finite elements with mass-lumping for the 1D wave equation , 1994 .
[6] J. Butcher. Numerical Methods for Ordinary Differential Equations: Butcher/Numerical Methods , 2005 .
[7] Eleuterio F. Toro,et al. ADER: Arbitrary High Order Godunov Approach , 2002, J. Sci. Comput..
[8] Nathalie Tordjman,et al. Éléments finis d'ordre élevé avec condensation de masse pour l'équation des ondes , 1994 .
[9] Gary Cohen. Higher-Order Numerical Methods for Transient Wave Equations , 2001 .
[10] W. A. Mulder,et al. Higher-order triangular and tetrahedral finite elements with mass lumping for solving the wave equation , 1999 .
[11] P. Lax,et al. Systems of conservation laws , 1960 .
[12] J. Butcher. Numerical methods for ordinary differential equations in the 20th century , 2000 .
[13] Jean E. Roberts,et al. Higher Order Triangular Finite Elements with Mass Lumping for the Wave Equation , 2000, SIAM J. Numer. Anal..