Fundamental two-stage formulation for Bayesian system identification, Part II: Application to ambient vibration data

Abstract A fundamental theory has been developed for a general two-stage Bayesian system identification problem in the companion paper (Part I). This paper applies the theory to the particular case of structural system identification using ambient vibration data. In Stage I, the modal properties are identified using the Fast Bayesian FFT method. Given the data, their posterior distribution can be well approximated by a Gaussian distribution whose mean and covariance matrix can be computed efficiently. In Stage II, the structural model parameters (e.g., stiffness, mass) are identified incorporating the posterior distribution of the natural frequencies and mode shapes in Stage I and their conditional distribution based on the theoretical structural finite element model. Synthetic and experimental data are used to illustrate the proposed theory and applications. A number of factors commonly relevant to structural system identification are studied, including the number of measured degrees of freedom, the number of identifiable modes and sensor alignment error.

[1]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[2]  S. Au Fast Bayesian ambient modal identification in the frequency domain, Part II: Posterior uncertainty , 2012 .

[3]  J. Beck,et al.  Updating Models and Their Uncertainties. I: Bayesian Statistical Framework , 1998 .

[4]  S. Au Fast Bayesian ambient modal identification in the frequency domain, Part I: Posterior most probable value , 2012 .

[5]  C. Papadimitriou,et al.  A probabilistic approach to structural model updating , 1998 .

[6]  C. Papadimitriou,et al.  Structural model updating and prediction variability using Pareto optimal models , 2008 .

[7]  Siu-Kui Au,et al.  Bayesian operational modal analysis: Theory, computation, practice , 2013 .

[8]  Siu-Kui Au,et al.  Development of a practical algorithm for Bayesian model updating of a coupled slab system utilizing field test data , 2014 .

[9]  Lambros S. Katafygiotis,et al.  Efficient model updating and health monitoring methodology using incomplete modal data without mode matching , 2006 .

[10]  Siu-Kui Au,et al.  Uncertainty law in ambient modal identification—Part I: Theory , 2014 .

[11]  Siu-Kui Au,et al.  Uncertainty law in ambient modal identification---Part II: Implication and field verification , 2014 .

[12]  L. Katafygiotis,et al.  Tangential‐projection algorithm for manifold representation in unidentifiable model updating problems , 2002 .

[13]  James L. Beck,et al.  A Bayesian probabilistic approach to structural health monitoring , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[14]  Iason Papaioannou,et al.  Bayesian Updating with Structural Reliability Methods , 2015 .

[15]  Siu-Kui Au,et al.  Fundamental two-stage formulation for Bayesian system identification, Part I: General theory , 2016 .

[16]  Siu-Kui Au,et al.  Erratum for “Fast Bayesian FFT Method for Ambient Modal Identification with Separated Modes” by Siu-Kui Au , 2013 .

[17]  Rik Pintelon,et al.  Identification of Linear Systems: A Practical Guideline to Accurate Modeling , 1991 .

[18]  Siu-Kui Au,et al.  On assessing the posterior mode shape uncertainty in ambient modal identification , 2011 .

[19]  Lambros S. Katafygiotis,et al.  Bayesian Fast Fourier Transform Approach for Modal Updating Using Ambient Data , 2003 .

[20]  Helmut Wenzel,et al.  Ambient Vibration Monitoring , 2005 .

[21]  James L. Beck,et al.  Monitoring Structural Health Using a Probabilistic Measure , 2001 .

[22]  Siu-Kui Au,et al.  Fast Bayesian FFT Method for Ambient Modal Identification with Separated Modes , 2011 .

[23]  Alessandro De Stefano,et al.  Vibration-based monitoring of civil infrastructure: challenges and successes , 2011 .

[24]  J. Beck,et al.  Bayesian Updating of Structural Models and Reliability using Markov Chain Monte Carlo Simulation , 2002 .

[25]  J. Ching,et al.  Transitional Markov Chain Monte Carlo Method for Bayesian Model Updating, Model Class Selection, and Model Averaging , 2007 .

[26]  C. Papadimitriou,et al.  Structural identification based on optimally weighted modal residuals , 2007 .