Mountain pass theorems and global homeomorphism theorems

Abstract We show that mountain-pass theorems can be used to derive global homeomorphism theorems. Two new mountain-pass theorems are proved, generalizing the “smooth” mountain-pass theorem, one applying in locally compact topological spaces, using Hofer’s concept of mountain-pass point, and another applying in complete metric spaces, using a generalized notion of critical point similar to the one introduced by Ioffe and Schwartzman. These are used to prove global homeomorphism theorems for certain topological and metric spaces, generalizing known global homeomorphism theorems for mappings between Banach spaces.