Symmetry Groups for the Decomposition of Reversible Computers, Quantum Computers, and Computers in between

Whereas quantum computing circuits follow the symmetries of the unitary Lie group, classical reversible computation circuits follow the symmetries of a finite group, i.e., the symmetric group. We confront the decomposition of an arbitrary classical reversible circuit with w bits and the decomposition of an arbitrary quantum circuit with w qubits. Both decompositions use the control gate as building block, i.e., a circuit transforming only one (qu)bit, the transformation being controlled by the other w−1 (qu)bits. We explain why the former circuit can be decomposed into 2w − 1 control gates, whereas the latter circuit needs 2w − 1 control gates. We investigate whether computer circuits, not based on the full unitary group but instead on a subgroup of the unitary group, may be decomposable either into 2w − 1 or into 2w − 1 control gates.

[1]  V.V. Shende,et al.  Synthesis of quantum-logic circuits , 2006, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[2]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[3]  B. Hall Lie Groups, Lie Algebras, and Representations , 2003 .

[4]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[5]  Hiroshi Sekigawa,et al.  A new algorithm for producing quantum circuits using KAK decompositions , 2005, Quantum Inf. Comput..

[6]  R. Landauer,et al.  Minimal energy dissipation in logic , 1970 .

[7]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[8]  Juha J. Vartiainen,et al.  Quantum circuits with uniformly controlled one-qubit gates (7 pages) , 2005 .

[9]  Robert Wille,et al.  BDD-based synthesis of reversible logic for large functions , 2009, 2009 46th ACM/IEEE Design Automation Conference.

[10]  R. Gilmore,et al.  Lie Groups, Lie Algebras, and Some of Their Applications , 1974 .

[11]  S. Zienau Quantum Physics , 1969, Nature.

[12]  Alexis De Vos,et al.  Decomposition of a Linear Reversible Computer: Digital Versus Analog , 2010, Int. J. Unconv. Comput..

[13]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[14]  Igor L. Markov An Introduction to Reversible Circuits , .

[15]  Alexis De Vos,et al.  From Group Theory to Reversible Computers , 2008, Int. J. Unconv. Comput..

[16]  Robert Wille,et al.  Towards a Design Flow for Reversible Logic , 2010 .

[17]  Faisal Shah Khan,et al.  Synthesis of Ternary Quantum Logic Circuits by Decomposition , 2005, quant-ph/0511041.

[18]  R. Landauer,et al.  Irreversibility and heat generation in the computing process , 1961, IBM J. Res. Dev..

[19]  David Deutsch,et al.  Machines, logic and quantum physics , 2000, Bull. Symb. Log..

[20]  Linda M. Wills,et al.  Reverse Engineering , 1996, Springer US.

[21]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[22]  Alexis De Vos,et al.  Young subgroups for reversible computers , 2008, Adv. Math. Commun..

[23]  Mikko Möttönen,et al.  Quantum circuits for general multiqubit gates. , 2004, Physical review letters.

[24]  A. Galindo,et al.  Information and computation: Classical and quantum aspects , 2001, quant-ph/0112105.

[25]  Tommaso Toffoli,et al.  Reversible Computing , 1980, ICALP.

[26]  D. Deutsch,et al.  Rapid solution of problems by quantum computation , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.