Implicit TVD schemes for hyperbolic conservation laws in curvilinear coordinates

Extension des schemas a diminution de variation totale (TVD) aux lois de conservation hyperboliques multidimensionnelles en coordonnes curvilignes. Resultats numeriques pour les equations d'Euler

[1]  H. C. Yee On the implementation of a class of upwind schemes for system of hyperbolic conservation laws , 1985 .

[2]  T. H. Pulliam,et al.  Euler computations of AGARD Working Group 07 airfoil test cases , 1985 .

[3]  Generalized formulation of a class of explicit and implicit TVD schemes , 1985 .

[4]  Ami Harten,et al.  Self adjusting grid methods for one-dimensional hyperbolic conservation laws☆ , 1983 .

[5]  H. C. Yee,et al.  Application of second-order-accurate Total Variation Diminishing (TVD) schemes to the Euler equations in general geometries , 1983 .

[6]  H. C. Yee,et al.  Linearized form of implicit TVD schemes for the multidimensional Euler and Navier-Stokes equations , 1986 .

[7]  R. F. Warming,et al.  An implicit finite-difference algorithm for hyperbolic systems in conservation-law form. [application to Eulerian gasdynamic equations , 1976 .

[8]  Philip L. Roe,et al.  Generalized formulation of TVD Lax-Wendroff schemes , 1984 .

[9]  J. Steger,et al.  Recent improvements in efficiency, accuracy, and convergence for implicit approximate factorization algorithms. [computational fluid dynamics , 1985 .

[10]  P. Woodward,et al.  The Piecewise Parabolic Method (PPM) for Gas Dynamical Simulations , 1984 .

[11]  H. C. Yee,et al.  Implicit Total Variation Diminishing (TVD) schemes for steady-state calculations. [in gas dynamics , 1985 .

[12]  A. Jameson,et al.  Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes , 1981 .

[13]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .