Gromov Hyperbolicity in Strong Product Graphs

If X is a geodesic metric space and $x_1,x_2,x_3\in X$, a geodesic triangle $T=\{x_1,x_2,x_3\}$ is the union of the three geodesics $[x_1x_2]$, $[x_2x_3]$ and $[x_3x_1]$ in $X$. The space $X$ is $\delta$-hyperbolic $($in the Gromov sense$)$ if any side of $T$ is contained in a $\delta$-neighborhood of the union of the two other sides, for every geodesic triangle $T$ in $X$. If $X$ is hyperbolic, we denote by $\delta (X)$ the sharp hyperbolicity constant of $X$, i.e., $\delta (X)=\inf\{\delta\geq 0: \, X \, \text{ is $\delta$-hyperbolic}\,\}\,.$ In this paper we characterize the strong product of two graphs $G_1\boxtimes G_2$ which are hyperbolic, in terms of $G_1$ and $G_2$: the strong product graph $G_1\boxtimes G_2$ is hyperbolic if and only if one of the factors is hyperbolic and the other one is bounded. We also prove some sharp relations between $\delta (G_1\boxtimes G_2)$, $\delta (G_1)$, $\delta (G_2)$ and the diameters of $G_1$ and $G_2$ (and we find families of graphs for which the inequalities are attained). Furthermore, we obtain the exact values of the hyperbolicity constant for many strong product graphs.

[1]  S. Buckley,et al.  Geometric characterizations of Gromov hyperbolicity , 2003 .

[2]  Jose Maria Sigarreta,et al.  Hyperbolicity and parameters of graphs , 2011, Ars Comb..

[3]  José M. Rodríguez,et al.  Gromov hyperbolicity through decomposition of metrics spaces II , 2004 .

[4]  Y. Cho,et al.  Discrete Groups , 1994 .

[5]  Jose Maria Sigarreta,et al.  Distortion of the Hyperbolicity Constant of a Graph , 2012, Electron. J. Comb..

[6]  É. Ghys,et al.  Sur Les Groupes Hyperboliques D'Apres Mikhael Gromov , 1990 .

[7]  W. Imrich,et al.  Product Graphs: Structure and Recognition , 2000 .

[8]  José Cáceres,et al.  On the geodetic and the hull numbers in strong product graphs , 2009, Comput. Math. Appl..

[9]  A. Haefliger,et al.  Group theory from a geometrical viewpoint , 1991 .

[10]  E. Jonckheere,et al.  Geometry of network security , 2004, Proceedings of the 2004 American Control Conference.

[11]  E. Jonckheere Contrôle du trafic sur les réseaux à géométrie hyperbolique : Vers une théorie géométrique de la sécurité de l'acheminement de l'information , 2003 .

[12]  GROMOV HYPERBOLIC TESSELLATION GRAPHS , 2012 .

[13]  Ali Kaveh,et al.  Graph products for configuration processing of space structures , 2008 .

[14]  José M. Rodríguez,et al.  Gromov Hyperbolicity of Riemann Surfaces , 2007 .

[15]  Jose Maria Sigarreta,et al.  On the hyperbolicity constant in graphs , 2011, Discret. Math..

[16]  José M. Rodríguez,et al.  Gromov hyperbolic equivalence of the hyperbolic and quasihyperbolic metrics in Denjoy domains , 2010 .

[17]  J. Rodríguez Characterization of Gromov hyperbolic short graphs , 2014 .

[18]  José M. Rodríguez,et al.  Gromov hyperbolicity of planar graphs , 2013 .

[19]  Jose Maria Sigarreta,et al.  Computing the hyperbolicity constant , 2011, Comput. Math. Appl..

[20]  José M. Rodríguez,et al.  Gromov hyperbolicity of periodic planar graphs , 2014 .

[21]  J. Koolen,et al.  On the Hyperbolicity of Chordal Graphs , 2001 .

[22]  José M. Rodríguez,et al.  Uniformly Separated Sets and Gromov Hyperbolicity of Domains with the Quasihyperbolic Metric , 2011 .

[23]  GROMOV HYPERBOLICITY OF PLANAR GRAPHS AND CW COMPLEXES , 2011 .

[24]  A. Portilla,et al.  A characterization of Gromov hyperbolicity of surfaces with variable negative curvature , 2009 .

[25]  Gert Sabidussi,et al.  Graph multiplication , 1959 .

[26]  Jose Maria Sigarreta,et al.  On the Hyperbolicity Constant of Line Graphs , 2011, Electron. J. Comb..

[27]  José M. Rodríguez,et al.  Gromov hyperbolicity in Cartesian product graphs , 2010 .

[28]  Shing-Tung Yau,et al.  Graph homotopy and Graham homotopy , 2001, Discret. Math..

[29]  Pedro García-Vázquez,et al.  The Menger number of the strong product of graphs , 2013, Discret. Math..

[30]  Characterizing hyperbolic spaces and real trees , 2008, 0810.1526.

[31]  P. Hästö Gromov hyperbolicity of the jG and jG metrics , 2005 .

[32]  José M. Rodríguez,et al.  Gromov hyperbolicity through decomposition of metric spaces , 2004 .

[33]  J. Heinonen,et al.  Uniformizing Gromov hyperbolic spaces , 2001 .

[34]  M. Habib,et al.  Notes on diameters , centers , and approximating trees of δ-hyperbolic geodesic spaces and graphs , 2008 .

[35]  Edmond A. Jonckheere,et al.  Upper bound on scaled Gromov-hyperbolic delta , 2007, Appl. Math. Comput..

[36]  Jacobus H. Koolen,et al.  Hyperbolic Bridged Graphs , 2002, Eur. J. Comb..

[37]  Simon Spacapan Connectivity of Strong Products of Graphs , 2010, Graphs Comb..

[38]  José M. Rodríguez,et al.  Gromov hyperbolic cubic graphs , 2012 .

[39]  Edmond A. Jonckheere,et al.  Scaled Gromov hyperbolic graphs , 2008, J. Graph Theory.

[40]  J. M. Sigarreta Hyperbolicity in median graphs , 2013 .

[41]  José M. Rodríguez,et al.  Gromov hyperbolicity of Denjoy domains with hyperbolic and quasihyperbolic metrics , 2008, 0806.0097.

[42]  José M. Rodríguez,et al.  Comparative Gromov hyperbolicity results for the hyperbolic and quasihyperbolic metrics , 2010 .

[43]  Venancio Alvarez,et al.  Gromov hyperbolicity of Denjoy Domains , 2007 .

[44]  E. Tourís Graphs and Gromov hyperbolicity of non-constant negatively curved surfaces , 2011 .

[45]  Jose Maria Sigarreta,et al.  Hyperbolicity and complement of graphs , 2011, Appl. Math. Lett..

[46]  Jose Maria Sigarreta,et al.  Gromov hyperbolic graphs , 2013, Discret. Math..