Fast (Multi-)Evaluation of Linearly Recurrent Sequences: Improvements and Applications

For a linearly recurrent vector sequence P[n+1] = A(n) * P[n], consider the problem of calculating either the n-th term P[n] or L 0 within O((log(1/e)^{1/2} loglog(1/e)) -- as opposed to O(log(1/e)) -- arithmetic steps. * Given m and a polynomial p of degree d over a field of characteristic zero, the coefficient of p^m to term X^n can be computed within O(d^2 M(n^{1/2})) steps where M(n) denotes the cost of multiplying two degree-n polynomials. * The same time bound holds for the joint calculation of any L<=n^{1/2} desired coefficients of p^m to terms X^{n_i}, n_1,...,n_L <= n.

[1]  Éric Schost,et al.  Tellegen's principle into practice , 2003, ISSAC '03.

[2]  Bruno Salvy,et al.  GFUN: a Maple package for the manipulation of generating and holonomic functions in one variable , 1994, TOMS.

[3]  Joachim von zur Gathen,et al.  Modern Computer Algebra , 1998 .

[4]  Bradley K. Alpert,et al.  A Fast Algorithm for the Evaluation of Legendre Expansions , 1991, SIAM J. Sci. Comput..

[5]  Volker Strassen,et al.  Algebraic Complexity Theory , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[6]  Victor Shoup Efficient computation of minimal polynomials in algebraic extensions of finite fields , 1999, ISSAC '99.

[7]  Wolfram Koepf,et al.  Efficient Computation of Chebyshev Polynomials in Computer Algebra , 2003 .

[8]  V. Pan Structured Matrices and Polynomials , 2001 .

[9]  Éric Schost,et al.  Linear Recurrences with Polynomial Coefficients and Computation of the Cartier-Manin Operator on Hyperelliptic Curves , 2003, International Conference on Finite Fields and Applications.

[10]  Qi Cheng On the Ultimate Complexity of Factorials , 2003, STACS.

[11]  Charles M. Fiduccia,et al.  An Efficient Formula for Linear Recurrences , 1985, SIAM J. Comput..

[12]  Larry J. Stockmeyer,et al.  On the Number of Nonscalar Multiplications Necessary to Evaluate Polynomials , 1973, SIAM J. Comput..

[13]  Jürgen Gerhard,et al.  Modular Algorithms in Symbolic Summation and Symbolic Integration , 2005, Lecture Notes in Computer Science.

[14]  Richard J. Fateman,et al.  Lookup tables, recurrences and complexity , 1989, ISSAC '89.

[15]  Francesco Giacomo Tricomi,et al.  Vorlesungen über Orthogonalreihen , 1955 .

[16]  V. B. Uvarov,et al.  Special Functions of Mathematical Physics: A Unified Introduction with Applications , 1988 .

[17]  Don Coppersmith,et al.  Matrix multiplication via arithmetic progressions , 1987, STOC.

[18]  Eigenvalue multiplicities of products of companion matrices , 2004 .

[19]  Wolfram Koepf,et al.  Recurrence equations and their classical orthogonal polynomial solutions , 2002, Appl. Math. Comput..

[20]  Ronald L. Graham,et al.  Concrete mathematics - a foundation for computer science , 1991 .

[21]  H. T. Kung,et al.  Fast Algorithms for Manipulating Formal Power Series , 1978, JACM.

[22]  R. Gregory Taylor,et al.  Modern computer algebra , 2002, SIGA.

[23]  F. Frances Yao,et al.  Computational Geometry , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[24]  Wolfram Koepf,et al.  The Algebra of Holonomic Equations , 2003 .

[25]  Pascal Koiran Valiant’s model and the cost of computing integers , 2004, computational complexity.

[26]  Michael Clausen,et al.  Algebraic complexity theory , 1997, Grundlehren der mathematischen Wissenschaften.

[27]  Victor Y. Pan,et al.  Fast Rectangular Matrix Multiplication and Applications , 1998, J. Complex..

[28]  D. V. Chudnovsky,et al.  Approximations and complex multiplication according to Ramanujan , 2000 .