Random Matrix Ensembles with Singularities and a Hierarchy of Painlevé III Equations

We study unitary invariant random matrix ensembles with singular potentials. We obtain asymptotics for the partition functions associated to the Laguerre and Gaussian Unitary Ensembles perturbed with a pole of order k at the origin, in the double scaling limit where the size of the matrices grows, and at the same time the strength of the pole decreases at an appropriate speed. In addition, we obtain double scaling asymptotics of the correlation kernel for a general class of ensembles of positive-definite Hermitian matrices perturbed with a pole. Our results are described in terms of a hierarchy of higher order analogs to the PIII equation, which reduces to the PIII equation itself when the pole is simple.

[1]  M. Vanlessen,et al.  Strong Asymptotics of Laguerre-Type Orthogonal Polynomials and Applications in Random Matrix Theory , 2005 .

[2]  Yang Chen,et al.  Painlevé III and a singular linear statistics in Hermitian random matrix ensembles, I , 2008, J. Approx. Theory.

[3]  A. Sakka Linear problems and hierarchies of Painlevé equations , 2009 .

[4]  Dan Dai,et al.  Painlevé III asymptotics of Hankel determinants for a singularly perturbed Laguerre weight , 2014, J. Approx. Theory.

[5]  Stephanos Venakides,et al.  Strong asymptotics of orthogonal polynomials with respect to exponential weights , 1999 .

[6]  P. Deift,et al.  A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation , 1993 .

[7]  M. Y. Mo,et al.  A Matrix Model with a Singular Weight and Painlevé III , 2010, 1003.2964.

[8]  Christophe Texier,et al.  Wigner time-delay distribution in chaotic cavities and freezing transition. , 2013, Physical review letters.

[9]  P. Di Francesco,et al.  2D gravity and random matrices , 1993 .

[10]  K. M. Frahm,et al.  Distribution of the quantum mechanical time-delay matrix for a chaotic cavity , 1999 .

[11]  Athanassios S. Fokas,et al.  The isomonodromy approach to matric models in 2D quantum gravity , 1992 .

[12]  C. Texier,et al.  Capacitance and charge relaxation resistance of chaotic cavities —Joint distribution of two linear statistics in the Laguerre ensemble of random matrices , 2014, 1407.3302.

[13]  A. Kuijlaars,et al.  Critical Edge Behavior in Unitary Random Matrix Ensembles and the Thirty-Fourth Painlevé Transcendent , 2007, 0704.1972.

[14]  Athanassios S. Fokas,et al.  On the solvability of Painlevé II and IV , 1992 .

[15]  P. Forrester Log-Gases and Random Matrices , 2010 .

[16]  P. Forrester Log-Gases and Random Matrices (LMS-34) , 2010 .

[17]  Dan Dai,et al.  Critical Edge Behavior and the Bessel to Airy Transition in the Singularly Perturbed Laguerre Unitary Ensemble , 2013, 1309.4354.

[18]  Lidia Fernández,et al.  Semiclassical orthogonal polynomials in two variables , 2007 .

[19]  Percy Deift,et al.  New Results on the Equilibrium Measure for Logarithmic Potentials in the Presence of an External Field , 1998 .

[20]  J. Harnad,et al.  Semiclassical Orthogonal Polynomials, Matrix Models and Isomonodromic Tau Functions , 2006 .

[21]  V. Osipov,et al.  Are bosonic replicas faulty? , 2007, Physical review letters.

[22]  D. Shih,et al.  Flux vacua and branes of the minimal superstring , 2004, hep-th/0412315.

[23]  E. Saff,et al.  Logarithmic Potentials with External Fields , 1997 .

[24]  Athanassios S. Fokas,et al.  Painleve Transcendents: The Riemann-hilbert Approach , 2006 .

[25]  K. M. Frahm,et al.  Quantum mechanical time-delay matrix in chaotic scattering. , 1997 .

[26]  Stephanos Venakides,et al.  UNIFORM ASYMPTOTICS FOR POLYNOMIALS ORTHOGONAL WITH RESPECT TO VARYING EXPONENTIAL WEIGHTS AND APPLICATIONS TO UNIVERSALITY QUESTIONS IN RANDOM MATRIX THEORY , 1999 .

[27]  P. Deift,et al.  A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation , 1992, math/9201261.

[28]  QCD3 and the replica method , 2000, hep-th/0011072.

[29]  Pierpaolo Vivo,et al.  Singular-potential random-matrix model arising in mean-field glassy systems. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.