Polynomial chaos expansions for optimal control of nonlinear random oscillators
暂无分享,去创建一个
Roger Ghanem | Yongbo Peng | R. Ghanem | Jie Li | Jie Li | Yongbo Peng
[1] R. Ghanem,et al. Multi-resolution analysis of wiener-type uncertainty propagation schemes , 2004 .
[2] M. Sain,et al. Non-linear optimal control of a Duffing system , 1992 .
[3] Lawrence A. Bergman,et al. Reliability-Based Approach to Linear Covariance Control Design , 1998 .
[4] D. Bernstein. Nonquadratic cost and nonlinear feedback control , 1993 .
[5] W. T. Martin,et al. The Orthogonal Development of Non-Linear Functionals in Series of Fourier-Hermite Functionals , 1947 .
[6] Roger Ghanem,et al. Stochastic model reduction for chaos representations , 2007 .
[7] Dongbin Xiu,et al. The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..
[8] R. Ghanem,et al. Stochastic Finite Elements: A Spectral Approach , 1990 .
[9] Ling Hong,et al. On the feedback control of stochastic systems tracking prespecified probability density functions , 2005 .
[10] T. T. Soong,et al. An Optimal Nonlinear Feedback Control Strategy for Randomly Excited Structural Systems , 2001 .
[11] Roger Ghanem,et al. Adaptive polynomial chaos expansions applied to statistics of extremes in nonlinear random vibration , 1998 .
[12] Franz S. Hover,et al. Application of polynomial chaos in stability and control , 2006, Autom..
[13] Robert F. Stengel,et al. Probabilistic evaluation of control system robustness , 1995 .
[14] Billie F. Spencer,et al. Structural control design: a reliability-based approach , 1994, Proceedings of 1994 American Control Conference - ACC '94.
[15] Roger G. Ghanem,et al. Polynomial chaos representation of spatio-temporal random fields from experimental measurements , 2009, J. Comput. Phys..
[16] A. Monti,et al. A polynomial chaos theory approach to the control design of a power converter , 2004, 2004 IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No.04CH37551).
[17] Xun Yu Zhou,et al. Stochastic Linear Quadratic Regulators with Indefinite Control Weight Costs. II , 2000, SIAM J. Control. Optim..
[18] Jianbing Chen,et al. Stochastic Dynamics of Structures , 2009 .
[19] Weiqing Liu,et al. Stochastic Seismic Response and Reliability Analysis of Base-Isolated Structures , 2007 .
[20] James L. Beck,et al. Probabilistic control for the Active Mass Driver benchmark structural model , 1998 .
[21] Roger Ghanem,et al. Stochastic Finite Elements with Multiple Random Non-Gaussian Properties , 1999 .
[22] P. Spanos,et al. Random vibration and statistical linearization , 1990 .
[23] B. Anderson,et al. Optimal control: linear quadratic methods , 1990 .
[24] Zexiang Li,et al. Stable Controllers for Instantaneous Optimal Control , 1992 .
[25] Anil K. Agrawal,et al. Non-linear control strategies for Duffing systems , 1998 .
[26] N. Wiener. The Homogeneous Chaos , 1938 .
[27] George E. Karniadakis,et al. Adaptive Generalized Polynomial Chaos for Nonlinear Random Oscillators , 2005, SIAM J. Sci. Comput..
[28] Roger Ghanem,et al. Ingredients for a general purpose stochastic finite elements implementation , 1999 .
[29] Jianbing Chen,et al. A note on the principle of preservation of probability and probability density evolution equation , 2009 .
[30] Yongbo Peng,et al. A physical approach to structural stochastic optimal controls , 2010 .
[31] M. Sain. Control of linear systems according to the minimal variance criterion--A new approach to the disturbance problem , 1966 .
[32] Anil K. Agrawal,et al. OPTIMAL POLYNOMIAL CONTROL FOR SEISMICALLY EXCITED NON‐LINEAR AND HYSTERETIC STRUCTURES , 1996 .