Nonlocal conservation laws. I. A new class of monotonicity-preserving models

We introduce a new class of nonlocal nonlinear conservation laws in one space dimension that allow for nonlocal interactions over a finite horizon. The proposed model, which we refer to as the nonlocal pair-interaction model, inherits at the continuum level the unwinding feature of finite difference schemes for local hyperbolic conservation laws, so that the maximum principle and certain monotonicity properties hold and, consequently, the entropy inequalities are naturally satisfied. We establish a global-in-time well-posedness theory for these models which covers a broad class of initial data. Moreover, in the limit when the horizon parameter approaches zero, we are able to prove that our nonlocal model reduces to the conventional class of local hyperbolic conservation laws. Furthermore, we propose a numerical discretization method adapted to our nonlocal model, which relies on a monotone numerical flux and a uniform mesh, and we establish that these numerical solutions converge to a solution, providing ...

[1]  Jérôme Droniou Fractal Conservation Laws: Global Smooth Solutions and Vanishing Regularization , 2005 .

[2]  James M. Hyman,et al.  On Finite-Difference Approximations and Entropy Conditions for Shocks , 2015 .

[3]  S. Silling Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces , 2000 .

[4]  J. David Logan Nonlocal advection equations , 2003 .

[5]  E. Tadmor,et al.  Analysis of the spectral vanishing viscosity method for periodic conservation laws , 1989 .

[6]  R. LeVeque Numerical methods for conservation laws , 1990 .

[7]  P. LeFloch,et al.  Hyperbolic Systems of Conservation Laws: The Theory of Classical and Nonclassical Shock Waves , 2002 .

[8]  E. Tadmor Approximate solutions of nonlinear conservation laws , 1998 .

[9]  N. Risebro,et al.  On the uniqueness and stability of entropy solutions of nonlinear degenerate parabolic equations with rough coefficients , 2003 .

[10]  R. Sanders On convergence of monotone finite difference schemes with variable spatial differencing , 1983 .

[11]  Norbert Heuer,et al.  Numerical Approximation of a Time Dependent, Nonlinear, Space-Fractional Diffusion Equation , 2007, SIAM J. Numer. Anal..

[12]  Paulius Miškinis,et al.  Some properties of fractional burgers equation , 2002 .

[13]  DU Qiang,et al.  Numerical Solution of a Scalar One-Dimensional Monotonicity-Preserving Nonlocal Nonlinear Conservation Law , 2017 .

[14]  Qiang Du,et al.  Analysis of a scalar nonlocal peridynamic model with a sign changing kernel , 2013 .

[15]  O. Oleinik Discontinuous solutions of non-linear differential equations , 1963 .

[16]  Qiang Du,et al.  Mathematical Models and Methods in Applied Sciences c ○ World Scientific Publishing Company Sandia National Labs SAND 2010-8353J A NONLOCAL VECTOR CALCULUS, NONLOCAL VOLUME-CONSTRAINED PROBLEMS, AND NONLOCAL BALANCE LAWS , 2022 .

[17]  M. Crandall,et al.  Some relations between nonexpansive and order preserving mappings , 1980 .

[18]  W. A. Woyczyński Burgers-KPZ Turbulence , 1998 .

[19]  M. Crandall,et al.  Monotone difference approximations for scalar conservation laws , 1979 .

[20]  Qiang Du,et al.  Nonlocal convection–diffusion problems and finite element approximations , 2015 .

[21]  Rinaldo M. Colombo,et al.  On the Numerical Integration of Scalar Nonlocal Conservation Laws , 2015 .

[22]  Liviu I. Ignat,et al.  A nonlocal convection–diffusion equation , 2007 .

[23]  P. Lax Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves , 1987 .

[24]  Sylvie Benzoni-Gavage,et al.  Local well-posedness of nonlocal Burgers equations , 2009, Differential and Integral Equations.

[25]  Nathael Alibaud,et al.  Asymptotic Properties of Entropy Solutions to Fractal Burgers Equation , 2009, SIAM J. Math. Anal..

[26]  Hailiang Liu,et al.  Wave Breaking in a Class of Nonlocal Dispersive Wave Equations , 2006 .

[27]  Christian Schmeiser,et al.  Burgers--Poisson: A Nonlinear Dispersive Model Equation , 2004, SIAM J. Appl. Math..

[28]  A. I. Vol'pert THE SPACES BV AND QUASILINEAR EQUATIONS , 1967 .

[29]  S. Kružkov FIRST ORDER QUASILINEAR EQUATIONS IN SEVERAL INDEPENDENT VARIABLES , 1970 .

[30]  Adam J. J. Chmaj Existence of traveling waves for the nonlocal Burgers equation , 2007, Appl. Math. Lett..

[31]  Philippe G. LeFloch,et al.  A kinetic decomposition for singular limits of non-local conservation laws , 2009 .

[32]  Wojbor A. Woyczyński,et al.  Global and Exploding Solutions for Nonlocal Quadratic Evolution Problems , 1998, SIAM J. Appl. Math..

[33]  Christian Rohde,et al.  Scalar Conservation Laws with Mixed Local and Nonlocal Diffusion-Dispersion Terms , 2005, SIAM J. Math. Anal..

[34]  R. Lehoucq,et al.  Peridynamic Theory of Solid Mechanics , 2010 .

[35]  Kun Zhou,et al.  Analysis and Approximation of Nonlocal Diffusion Problems with Volume Constraints , 2012, SIAM Rev..

[36]  Qiang Du,et al.  Analysis and Comparison of Different Approximations to Nonlocal Diffusion and Linear Peridynamic Equations , 2013, SIAM J. Numer. Anal..

[37]  Qiang Du,et al.  A New Approach for a Nonlocal, Nonlinear Conservation Law , 2012, SIAM J. Appl. Math..

[38]  Kevin Zumbrun,et al.  On a nonlocal dispersive equation modeling particle suspensions , 1999 .

[39]  Christian Rohde,et al.  The computation of nonclassical shock waves with a heterogeneous multiscale method , 2010, Networks Heterog. Media.

[40]  C. Angelopoulos High resolution schemes for hyperbolic conservation laws , 1992 .

[41]  J. Smoller Shock Waves and Reaction-Diffusion Equations , 1983 .

[42]  Qiang Du,et al.  Nonlocal convection-diffusionvolume-constrained problems and jump processes , 2014 .

[43]  Qiang Du,et al.  Asymptotically Compatible Schemes and Applications to Robust Discretization of Nonlocal Models , 2014, SIAM J. Numer. Anal..

[44]  Gui-Qiang G. Chen,et al.  Spectral Viscosity Approximations to Multidimensional Scalar Conservation Laws , 1993 .

[45]  P. Lax,et al.  Systems of conservation laws , 1960 .

[46]  Nathael Alibaud,et al.  Non-uniqueness of weak solutions for the fractal Burgers equation , 2009, 0907.3695.

[47]  Changjiang Zhu,et al.  Energy method for multi-dimensional balance laws with non-local dissipation , 2010 .

[48]  Michael G. Crandall,et al.  The semigroup approach to first order quasilinear equations in several space variables , 1972 .

[49]  Kun Zhou,et al.  Mathematical and Numerical Analysis of Linear Peridynamic Models with Nonlocal Boundary Conditions , 2010, SIAM J. Numer. Anal..

[50]  John K. Hunter,et al.  Hamiltonian Equations for Scale‐Invariant Waves , 2002 .