A reading algorithm for constraint diagrams

Constraint diagrams are a visual notation designed to complement the Unified Modeling Language in the development of software systems. They generalize Venn diagrams and Euler circles, and include facilities for quantification and navigation of relations. Their design emphasizes scalability and expressiveness while retaining intuitiveness. The formalization of constraint diagrams is non-trivial: previous attempts have exposed subtleties concerned with the ordering of symbols in the visual language. Consequently, some constraint diagrams have more than one intuitive reading. We develop the concept of the dependence graph for a constraint diagram. From the dependence graph, we obtain a set of reading trees. A reading tree provides a partial ordering for some syntactic elements of the diagram. Given a reading tree for a constraint diagram, we present an algorithm that delivers a unique semantic reading.

[1]  Westone,et al.  Home Page , 2004, 2022 2nd International Conference on Intelligent Cybernetics Technology & Applications (ICICyTA).

[2]  Sun-Joo Shin,et al.  The logical status of diagrams , 1995 .

[3]  John Taylor,et al.  SD2: a sound and complete diagrammatic reasoning system , 2000, Proceeding 2000 IEEE International Symposium on Visual Languages.

[4]  Stuart Kent,et al.  Towards a formalization of constraint diagrams , 2001, Proceedings IEEE Symposia on Human-Centric Computing Languages and Environments (Cat. No.01TH8587).

[5]  J. Venn,et al.  . On the diagrammatic and mechanical representation of propositions and reasonings , 2022 .

[6]  Leonhard Euler,et al.  Lettres à une princesse d'Allemagne sur divers sujets de physique & de philosophie , 1812 .

[7]  John Howse,et al.  Generating Euler Diagrams , 2002, Diagrams.

[8]  Stuart Kent,et al.  Constraint Diagrams: Visualizing Invariants in OO Modelling , 1997, OOPSLA 1997.

[9]  Stuart Kent,et al.  Spider Diagrams: A Diagrammatic Reasoning System , 2001, J. Vis. Lang. Comput..

[10]  Jos Warmer,et al.  The object constraint language , 1998 .

[11]  Eric Hammer,et al.  Logic and Visual Information , 1995 .

[12]  Gem Stapleton,et al.  Corresponding Regions in Euler Diagrams , 2002, Diagrams.

[13]  Andrew Fish,et al.  Computing Reading Trees for Constraint Diagrams , 2003, AGTIVE.