An algorithm for computing genera of ternary and quaternary quadratic forms

It is well known that due to the simple shape of the reduction conditions in these dimensions [Mil, Ca] it is in principle no problem to compute representatives of all classes of such quadratic forms whose discriminant is below a given bound. This has been done by hand in the ternary case for halfdiscriminant up to 1000 by Brandt and Intrau [BI], for quaternaries see [Ge, To]. It is, however, sometimes desirable to be able to quickly determine representatives of all classes in some fixed genus of quadratic forms of possibly high discriminant without having to generate along the way all forms of smaller discriminant.

[1]  M. Kneser,et al.  Klassenzahlen definiter quadratischer Formen , 1957 .

[2]  K. Germann Tabellen reduzierter, positiver quaternärer quadratischer Formen , 1963 .

[3]  O. O’Meara Introduction to quadratic forms , 1965 .

[4]  Etsuko Bannai Positive Definite Unimodular Lattices with Trivial Automorphism Groups , 1988 .

[5]  P. Ponomarev Class numbers of definite quaternary forms with square discriminant , 1974 .

[6]  R. Jacobowitz Review: O. T. O'Meara, Introduction to quadratic forms , 1965 .

[7]  Ein Beispiel positiv definiter quadratischer Formen der Dimension 4 mit gleichen Darstellungszahlen , 1990 .

[8]  M. Eichler Die Ähnlichkeitsklassen indefiniter Gitter , 1952 .

[9]  M. Kneser Starke Approximation in algebraischen Gruppen. I. , 1965 .

[10]  Helmut Koch,et al.  Über ganzzahlige unimodulare euklidische Gitter. , 1989 .

[11]  Siegel Modular Forms and Theta Series attached to quaternion algebras II , 1991, math/9510208.

[12]  B. M. Fulk MATH , 1992 .

[13]  A. Pizer,et al.  An algorithm for computing modular forms on Γ0(N) , 1980 .

[14]  J. Hsia,et al.  Spinor equivalence of quadratic forms , 1983 .

[15]  R. Schulze-Pillot A linear relation between theta series of degree and weight 2 , 1989 .

[16]  A. G. Earnest,et al.  Spinor norms of local integral rotations. II. , 1975 .

[17]  B. L. Waerden Die Reduktionstheorie Der Positiven Quadratischen Formen , 1956 .

[18]  H. Brandt,et al.  Tabellen reduzierter positiver ternärer quadratischer Formen , 1958 .

[19]  N. J. A. Sloane,et al.  Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.

[20]  M. Kneser Klassenzahlen indefiniter quadratischer Formen in drei oder mehr Veränderlichen , 1956 .

[21]  S. Townes Table of Reduced Positive Quaternary Quadratic Forms , 1940 .

[22]  G. B. Mathews Theory of numbers , 1963 .

[23]  Hans Niemeier Definite quadratische formen der dimension 24 und diskriminante 1 , 1973 .

[24]  Michael Pohst,et al.  Algorithmic algebraic number theory , 1989, Encyclopedia of mathematics and its applications.

[25]  A. Pizer Ramanujan graphs and Hecke operators , 1990 .

[26]  Michael E. Pohst Computation of integral solutions of a special type of systems of quadratic equations , 1983, EUROCAL.