New Numerical Algorithms for Critical Phenomena (Multi-Grid Methods and All That)

Monte Carlo computations in statistical mechanics and quantum field theory have been greatly hampered by critical slowing-down. We review recent progress in devising new Monte Carlo algorithms having radically reduced critical slowing-down. We discuss “collective-mode” algorithms (multi-grid and Swendsen-Wang) for spin systems and lattice field theories, and algorithms for the self-avoiding walk. We also discuss an algebraic multi-grid algorithm for solving Kirchhoff’s equations in the random-resistor problem.

[1]  A. Brandt,et al.  The Multi-Grid Method for the Diffusion Equation with Strongly Discontinuous Coefficients , 1981 .

[2]  J. Chayes,et al.  Bulk transport properties and exponent inequalities for random resistor and flow networks , 1986 .

[3]  John G. Kemeny,et al.  Finite Markov chains , 1960 .

[4]  D. Rose,et al.  Generalized nested dissection , 1977 .

[5]  Guttmann Validity of hyperscaling for the d=3 Ising model. , 1986, Physical review. B, Condensed matter.

[6]  George A. Baker,et al.  Analysis of hyperscaling in the Ising model by the high-temperature series method , 1977 .

[7]  J. Hammersley,et al.  Monte Carlo Methods , 1965 .

[8]  Wolfgang Hackbusch,et al.  Multi-grid methods and applications , 1985, Springer series in computational mathematics.

[9]  D. J. Paddon,et al.  Multigrid Methods for Integral and Differential Equations. , 1987 .

[10]  M. Fisher,et al.  The validity of hyperscaling in three dimensions for scalar spin systems , 1985 .

[11]  Lobb,et al.  Highly efficient algorithm for percolative transport studies in two dimensions. , 1988, Physical review. B, Condensed matter.

[12]  Goodman,et al.  Multigrid Monte Carlo method for lattice field theories. , 1986, Physical review letters.

[13]  Marius Iosifescu,et al.  Finite Markov Processes and Their Applications , 1981 .

[14]  Bernd A. Berg,et al.  Random paths and random surfaces on a digital computer , 1981 .

[15]  A. Sokal,et al.  The pivot algorithm: A highly efficient Monte Carlo method for the self-avoiding walk , 1988 .

[16]  Walter H. Stockmayer,et al.  Monte Carlo Calculations on the Dynamics of Polymers in Dilute Solution , 1962 .

[17]  Pearson,et al.  Dynamic correlations in the three-dimensional Ising model. , 1985, Physical review. B, Condensed matter.

[18]  Gene F. Mazenko,et al.  Dynamic critical exponent z in some two-dimensional models , 1981 .

[19]  William L. Briggs,et al.  A multigrid tutorial , 1987 .

[20]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[21]  Hansen,et al.  Fourier acceleration of relaxation processes in disordered systems. , 1986, Physical review letters.

[22]  S. I. Rubinow Mathematical Problems in the Biological Sciences , 1987 .

[23]  S. Kirkpatrick Percolation and Conduction , 1973 .

[24]  Sergio Caracciolo,et al.  Polymers and g|φ|4 theory in four dimensions , 1983 .

[25]  Kai Lai Chung,et al.  Markov Chains with Stationary Transition Probabilities , 1961 .

[26]  P. Gennes Scaling Concepts in Polymer Physics , 1979 .

[27]  Alan D. Sokal,et al.  Nonergodicity of local, length-conserving Monte Carlo algorithms for the self-avoiding walk , 1987 .

[28]  David P. Landau,et al.  Dynamical critical exponent of the 3D Ising model , 1987 .

[29]  E. Nummelin General irreducible Markov chains and non-negative operators: Notes and comments , 1984 .

[30]  Wolfgang Hackbusch,et al.  Multigrid Methods II , 1986 .

[31]  Sergio Caracciolo,et al.  A new Monte-Carlo approach to the critical properties of self-avoiding random walks , 1983 .

[32]  Wang,et al.  Nonuniversal critical dynamics in Monte Carlo simulations. , 1987, Physical review letters.

[33]  E. Nummelin General irreducible Markov chains and non-negative operators: List of symbols and notation , 1984 .

[34]  A. Brandt Algebraic multigrid theory: The symmetric case , 1986 .

[35]  A. Sokal,et al.  New Monte Carlo method for the self-avoiding walk , 1985 .

[36]  John B. Kogut Accelerating hybrid stochastic algorithm for spin models , 1986 .

[37]  I. M. Singer,et al.  Progress in Gauge Field Theory , 1984 .