Seismic attenuation due to wave-induced flow

Analytical expressions for three P-wave attenuation mechanisms in sedimentary rocks are given a unified theoretical framework. Two of the models concern wave-induced flow due to heterogeneity in the elastic moduli at mesoscopic scales (scales greater than grain sizes but smaller than wavelengths). In the first model, the heterogeneity is due to lithological variations (e.g., mixtures of sands and clays) with a single fluid saturating all the pores. In the second model, a single uniform lithology is saturated in mesoscopic ''patches'' by two immiscible fluids (e.g., air and water). In the third model, the heterogeneity is at ''microscopic'' grain scales (broken grain contacts and/or micro-cracks in the grains) and the associated fluid response corresponds to ''squirt flow''. The model of squirt flow derived here reduces to proper limits as any of the fluid bulk modulus, crack porosity, and/or frequency is reduced to zero. It is shown that squirt flow is incapable of explaining the measured level of loss (10{sup -2} < Q{sup -1} < 10{sup -1}) within the seismic band of frequencies (1 to 10{sup 4} Hz); however, either of the two mesoscopic scale models easily produce enough attenuation to explain the field data.

[1]  J. Berryman,et al.  Linear dynamics of double-porosity dual-permeability materials. I. Governing equations and acoustic attenuation. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  J. Berryman,et al.  Linear dynamics of double-porosity dual-permeability materials. II. Fluid transport equations. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  D. L. Johnson,et al.  Capillary forces in the acoustics of patchy-saturated porous media. , 2002, The Journal of the Acoustical Society of America.

[4]  Darrell R. Jackson,et al.  Comparison of sound speed and attenuation measured in a sandy sediment to predictions based on the Biot theory of porous media , 2002 .

[5]  Herbert F. Wang,et al.  A differential scheme for elastic properties of rocks with dry or saturated cracks , 2002 .

[6]  D. L. Johnson,et al.  Theory of frequency dependent acoustics in patchy-saturated porous media , 2001 .

[7]  E. Flekkøy,et al.  Two-phase flow through porous media in the fixed-contact-line regime. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[8]  James G. Berryman,et al.  Elastic wave propagation and attenuation in a double-porosity dual-permeability medium , 1998 .

[9]  Gary Mavko,et al.  Fluid distribution effect on sonic attenuation in partially saturated limestones , 1998 .

[10]  Rosemary Knight,et al.  Acoustic signatures of partial saturation , 1998 .

[11]  M. S. King,et al.  The measurement of velocity dispersion and frequency-dependent intrinsic attenuation in sedimentary rocks , 1997 .

[12]  Youli Quan,et al.  Seismic attenuation tomography using the frequency shift method , 1997 .

[13]  James G. Berryman,et al.  The elastic coefficients of double‐porosity models for fluid transport in jointed rock , 1995 .

[14]  P. Nagy,et al.  Generalized formula for the surface stiffness of fluid‐saturated porous media containing parallel pore channels , 1995 .

[15]  Boris Gurevich,et al.  Velocity and attenuation of elastic waves in finely layered porous rocks , 1995 .

[16]  A. Nur,et al.  Squirt flow in fully saturated rocks , 1995 .

[17]  P. Nagy,et al.  Experimental measurements of surface stiffness on water‐saturated porous solids , 1994 .

[18]  Andrew N. Norris,et al.  Low‐frequency dispersion and attenuation in partially saturated rocks , 1993 .

[19]  J. Berryman,et al.  Exact results for generalized Gassmann's equations in composite porous media with two constituents , 1991 .

[20]  J. Berryman,et al.  Seismic wave attenuation in fluid-saturated porous media , 1988 .

[21]  K. Aki,et al.  Multiple scattering and energy transfer of seismic waves—Separation of scattering effect from intrinsic attenuation II. Application of the theory to Hindu Kush region , 1988 .

[22]  Joel Koplik,et al.  Theory of dynamic permeability and tortuosity in fluid-saturated porous media , 1987, Journal of Fluid Mechanics.

[23]  W. Murphy Acoustic measures of partial gas saturation in tight sandstones , 1984 .

[24]  William F. Murphy,et al.  Effects of partial water saturation on attenuation in Massilon sandstone and Vycor porous glass , 1982 .

[25]  N. Dutta,et al.  On White's model of attenuation in rocks with partial gas saturation , 1979 .

[26]  N. Dutta,et al.  Attenuation and dispersion of compressional waves in fluid-filled porous rocks with partial gas saturation (White model); Part I, Biot theory , 1979 .

[27]  Amos Nur,et al.  Wave attenuation in partially saturated rocks , 1979 .

[28]  Bernard Budiansky,et al.  Viscoelastic properties of fluid-saturated cracked solids , 1977 .

[29]  Amos Nur,et al.  Melt squirt in the asthenosphere , 1975 .

[30]  J. White,et al.  Computed seismic speeds and attenuation in rocks with partial gas saturation , 1975 .

[31]  J. White,et al.  Low‐frequency seismic waves in fluid‐saturated layered rocks , 1975 .

[32]  R. Roscoe,et al.  Isotropic composites with elastic or viscoelastic phases: General bounds for the moduli and solutions for special geometries , 1973 .

[33]  R. Hill Elastic properties of reinforced solids: some theoretical principles , 1963 .

[34]  S. Shtrikman,et al.  A variational approach to the theory of the elastic behaviour of multiphase materials , 1963 .

[35]  M. Biot MECHANICS OF DEFORMATION AND ACOUSTIC PROPAGATION IN POROUS MEDIA , 1962 .

[36]  Zvi Hashin,et al.  The Elastic Moduli of Heterogeneous Materials , 1962 .

[37]  S. Shtrikman,et al.  Note on a variational approach to the theory of composite elastic materials , 1961 .

[38]  M. Biot Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. II. Higher Frequency Range , 1956 .

[39]  A. Skempton THE PORE-PRESSURE COEFFICIENTS A AND B , 1954 .

[40]  Steven R. Pride,et al.  Relationships between Seismic and Hydrological Properties , 2005 .

[41]  S. Shapiro,et al.  Dynamic-equivalent medium approach for thinly layered saturated sediments , 1997 .

[42]  K. Walton,et al.  The effective elastic moduli of a random packing of spheres , 1987 .

[43]  A. H. Thompson,et al.  The microgeometry and transport properties of sedimentary rock , 1987 .

[44]  B. Budiansky,et al.  Elastic moduli of a cracked solid , 1976 .

[45]  F. Gaßmann Uber die Elastizitat poroser Medien. , 1961 .

[46]  M. Biot,et al.  THE ELASTIC COEFFICIENTS OF THE THEORY OF CONSOLIDATION , 1957 .

[47]  S. Kelly,et al.  Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid , 1956 .

[48]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. II. Dielektrizitätskonstanten und Leitfähigkeiten von Vielkristallen der nichtregulären Systeme , 1936 .

[49]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .