Seismic attenuation due to wave-induced flow
暂无分享,去创建一个
[1] J. Berryman,et al. Linear dynamics of double-porosity dual-permeability materials. I. Governing equations and acoustic attenuation. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.
[2] J. Berryman,et al. Linear dynamics of double-porosity dual-permeability materials. II. Fluid transport equations. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.
[3] D. L. Johnson,et al. Capillary forces in the acoustics of patchy-saturated porous media. , 2002, The Journal of the Acoustical Society of America.
[4] Darrell R. Jackson,et al. Comparison of sound speed and attenuation measured in a sandy sediment to predictions based on the Biot theory of porous media , 2002 .
[5] Herbert F. Wang,et al. A differential scheme for elastic properties of rocks with dry or saturated cracks , 2002 .
[6] D. L. Johnson,et al. Theory of frequency dependent acoustics in patchy-saturated porous media , 2001 .
[7] E. Flekkøy,et al. Two-phase flow through porous media in the fixed-contact-line regime. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[8] James G. Berryman,et al. Elastic wave propagation and attenuation in a double-porosity dual-permeability medium , 1998 .
[9] Gary Mavko,et al. Fluid distribution effect on sonic attenuation in partially saturated limestones , 1998 .
[10] Rosemary Knight,et al. Acoustic signatures of partial saturation , 1998 .
[11] M. S. King,et al. The measurement of velocity dispersion and frequency-dependent intrinsic attenuation in sedimentary rocks , 1997 .
[12] Youli Quan,et al. Seismic attenuation tomography using the frequency shift method , 1997 .
[13] James G. Berryman,et al. The elastic coefficients of double‐porosity models for fluid transport in jointed rock , 1995 .
[14] P. Nagy,et al. Generalized formula for the surface stiffness of fluid‐saturated porous media containing parallel pore channels , 1995 .
[15] Boris Gurevich,et al. Velocity and attenuation of elastic waves in finely layered porous rocks , 1995 .
[16] A. Nur,et al. Squirt flow in fully saturated rocks , 1995 .
[17] P. Nagy,et al. Experimental measurements of surface stiffness on water‐saturated porous solids , 1994 .
[18] Andrew N. Norris,et al. Low‐frequency dispersion and attenuation in partially saturated rocks , 1993 .
[19] J. Berryman,et al. Exact results for generalized Gassmann's equations in composite porous media with two constituents , 1991 .
[20] J. Berryman,et al. Seismic wave attenuation in fluid-saturated porous media , 1988 .
[21] K. Aki,et al. Multiple scattering and energy transfer of seismic waves—Separation of scattering effect from intrinsic attenuation II. Application of the theory to Hindu Kush region , 1988 .
[22] Joel Koplik,et al. Theory of dynamic permeability and tortuosity in fluid-saturated porous media , 1987, Journal of Fluid Mechanics.
[23] W. Murphy. Acoustic measures of partial gas saturation in tight sandstones , 1984 .
[24] William F. Murphy,et al. Effects of partial water saturation on attenuation in Massilon sandstone and Vycor porous glass , 1982 .
[25] N. Dutta,et al. On White's model of attenuation in rocks with partial gas saturation , 1979 .
[26] N. Dutta,et al. Attenuation and dispersion of compressional waves in fluid-filled porous rocks with partial gas saturation (White model); Part I, Biot theory , 1979 .
[27] Amos Nur,et al. Wave attenuation in partially saturated rocks , 1979 .
[28] Bernard Budiansky,et al. Viscoelastic properties of fluid-saturated cracked solids , 1977 .
[29] Amos Nur,et al. Melt squirt in the asthenosphere , 1975 .
[30] J. White,et al. Computed seismic speeds and attenuation in rocks with partial gas saturation , 1975 .
[31] J. White,et al. Low‐frequency seismic waves in fluid‐saturated layered rocks , 1975 .
[32] R. Roscoe,et al. Isotropic composites with elastic or viscoelastic phases: General bounds for the moduli and solutions for special geometries , 1973 .
[33] R. Hill. Elastic properties of reinforced solids: some theoretical principles , 1963 .
[34] S. Shtrikman,et al. A variational approach to the theory of the elastic behaviour of multiphase materials , 1963 .
[35] M. Biot. MECHANICS OF DEFORMATION AND ACOUSTIC PROPAGATION IN POROUS MEDIA , 1962 .
[36] Zvi Hashin,et al. The Elastic Moduli of Heterogeneous Materials , 1962 .
[37] S. Shtrikman,et al. Note on a variational approach to the theory of composite elastic materials , 1961 .
[38] M. Biot. Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. II. Higher Frequency Range , 1956 .
[39] A. Skempton. THE PORE-PRESSURE COEFFICIENTS A AND B , 1954 .
[40] Steven R. Pride,et al. Relationships between Seismic and Hydrological Properties , 2005 .
[41] S. Shapiro,et al. Dynamic-equivalent medium approach for thinly layered saturated sediments , 1997 .
[42] K. Walton,et al. The effective elastic moduli of a random packing of spheres , 1987 .
[43] A. H. Thompson,et al. The microgeometry and transport properties of sedimentary rock , 1987 .
[44] B. Budiansky,et al. Elastic moduli of a cracked solid , 1976 .
[45] F. Gaßmann. Uber die Elastizitat poroser Medien. , 1961 .
[46] M. Biot,et al. THE ELASTIC COEFFICIENTS OF THE THEORY OF CONSOLIDATION , 1957 .
[47] S. Kelly,et al. Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid , 1956 .
[48] D. A. G. Bruggeman. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. II. Dielektrizitätskonstanten und Leitfähigkeiten von Vielkristallen der nichtregulären Systeme , 1936 .
[49] D. A. G. Bruggeman. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .