Wittgenstein and finitism

In this paper, elementary but hitherto overlooked connections are established between Wittgenstein's remarks on mathematics, written during his transitional period, and free-variable finitism. After giving a brief description of theTractatus Logico-Philosophicus on quantifiers and generality, I present in the first section Wittgenstein's rejection of quantification theory and his account of general arithmetical propositions, to use modern jargon, as claims (as opposed to statements). As in Skolem's primitive recursive arithmetic and Goodstein's equational calculus, Wittgenstein represented generality by the use of free variables. This has the effect that negation of unbounded universal and existential propositions cannot be expressed. This is claimed in the second section to be the basis for Wittgenstein's criticism of the universal validity of the law of excluded middle. In the last section, there is a brief discussion of Wittgenstein's remarks on real numbers. These show a preference, in line with finitism, for a recursive version of the continuum.

[1]  R. L. Goodstein Development of mathematical logic , 1940 .

[2]  Yvon Gauthier,et al.  A theory of local negation: The model and some applications , 1985, Arch. Math. Log..

[3]  Gordon P. Baker,et al.  Wittgenstein, rules, grammar, and necessity , 1985 .

[4]  G. E. M. Anscombe,et al.  An Introduction to Wittgenstein's Tractatus , 1959 .

[5]  B. Russell,et al.  Introduction to Mathematical Philosophy , 1920, The Mathematical Gazette.

[6]  Ludwig Wittgenstein,et al.  Wittgenstein's Lectures, Cambridge, 1932-1935 , 1979 .

[7]  R. Gandy Limitations to Mathematical Knowledge , 1982 .

[8]  G. Moore I.—WITTGENSTEIN'S LECTURES IN 1930–33 , 1954 .

[9]  F. Ramsey The foundations of mathematics , 1932 .

[10]  P. Bernays,et al.  Grundlagen der Mathematik , 1934 .

[11]  Oliver Aberth,et al.  Computable analysis , 1980 .

[12]  Bertrand Russell,et al.  The Autobiography of Bertrand Russell , 1950 .

[13]  Stefan Bauer-Mengelberg,et al.  On the Significance of the Principle of Excluded Middle in Mathematics, Especially in Function Theory , 1970 .

[14]  R. Carnap Logical Syntax of Language , 1937 .

[15]  Ludwig Wittgenstein,et al.  Notebooks, 1914-1916 , 1961 .

[16]  Solomon Feferman,et al.  Between constructive and classical mathematics , 1984 .

[17]  Max Black,et al.  A Companion to Wittgenstein's Tractatus , 1964 .

[18]  Robert Alva Noë Wittgenstein, Phenomenology and What It Makes Sense to Say , 1994 .

[19]  David Hilbert Philosophy of mathematics: On the infinite , 1984 .

[20]  Robert J. Fogelin WITTGENSTEIN: Second edition , 1995 .

[21]  F W Lawvere,et al.  AN ELEMENTARY THEORY OF THE CATEGORY OF SETS. , 1964, Proceedings of the National Academy of Sciences of the United States of America.

[22]  H. R. Smart,et al.  Logic: Part III. , 1926 .

[23]  F. Ramsey,et al.  Facts and Propositions , 1927 .

[24]  Bruce Lercher,et al.  Recursive Number Theory , 1958, The Mathematical Gazette.

[25]  Ludwig Wittgenstein,et al.  Culture and Value , 1970 .

[26]  H. Weyl,et al.  Über die neue Grundlagenkrise der Mathematik , 1921 .

[27]  R. Robinson Primitive recursive functions , 1947 .

[28]  L. E. J. Brouwer,et al.  Mathematik, Wissenschaft und Sprache , 1929 .

[29]  J. Heijenoort From Frege To Gödel , 1967 .

[30]  P. Frascolla Wittgenstein's philosophy of mathematics , 1994 .

[31]  Bertrand Russell,et al.  The Limits of Empiricism. , 1937 .

[32]  Hermann Weyl THE GHOST OF MODALITY , 1940 .

[33]  Haskell B. Curry A Formalization of Recursive Arithmetic , 1941 .

[34]  R. Goodstein Function Theory in an Axiom-Free Equation Calculus , 1945 .

[35]  J. L. Ayuso,et al.  Insight and illusion , 1992, British Journal of Psychiatry.

[36]  J. Heijenoort From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931 , 1967 .

[37]  C. Wright Wittgenstein On The Foundations Of Mathematics , 1980 .

[38]  R. Goodstein,et al.  Remarks on the Foundations of Mathematics , 1957, The Mathematical Gazette.

[39]  D. Hilbert Die logischen Grundlagen der Mathematik , 1922 .

[40]  Jean van Heijenoort Some metamathematical results on completeness and consistency, on formally undecidable propositions of principia mathematica and related systems i, and on completeness and consistency KURT GÖDEL (1930b, 1931, and 1931a) , 1970 .

[41]  Alice Ambrose IV.—FINITISM IN MATHEMATICS (I) , 1935 .

[42]  J. Mayberry What are numbers? , 1988 .

[43]  A. Heyting Die formalen Regeln der intuitionistischen Logik , 1930 .

[44]  Bertrand Russell VII.—The Limits of Empiricism , 1936 .

[45]  Oliver Aberth Computable Analysis and Differential Equations , 1970 .

[46]  Michael Dummett,et al.  The Source of the Concept of Truth , 1996 .

[47]  M. Beeson Foundations of Constructive Mathematics , 1985 .

[48]  Scott Soames,et al.  Generality, Truth Functions, and Expressive Capacity in the Tractatus , 1983 .

[49]  Robert J. Fogelin Wittgenstein and Intuitionism , 1992 .

[50]  L. Wittgenstein Tractatus Logico-Philosophicus , 2021, Nordic Wittgenstein Review.