Inhibition of non-homologous end joining increases the efficiency of CRISPR/Cas9-mediated precise [TM: inserted] genome editing

[1]  B. Langmead,et al.  Lighter: fast and memory-efficient sequencing error correction without counting , 2014, Genome Biology.

[2]  Ewelina Bolcun-Filas,et al.  A Mouse Geneticist’s Practical Guide to CRISPR Applications , 2014, Genetics.

[3]  Harvey F Lodish,et al.  Engineered red blood cells as carriers for systemic delivery of a wide array of functional probes , 2014, Proceedings of the National Academy of Sciences.

[4]  P. Frit,et al.  Alternative end-joining pathway(s): bricolage at DNA breaks. , 2014, DNA repair.

[5]  D. Sabatini,et al.  The Protein Synthesis Inhibitor Blasticidin S Enters Mammalian Cells via Leucine-rich Repeat-containing Protein 8D , 2014, The Journal of Biological Chemistry.

[6]  Jeffry D. Sander,et al.  CRISPR-Cas systems for editing, regulating and targeting genomes , 2014, Nature Biotechnology.

[7]  Hao Yin,et al.  Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype , 2014, Nature Biotechnology.

[8]  Stéphanie Panier,et al.  Double-strand break repair: 53BP1 comes into focus , 2013, Nature Reviews Molecular Cell Biology.

[9]  Wei Tang,et al.  Correction of a genetic disease in mouse via use of CRISPR-Cas9. , 2013, Cell stem cell.

[10]  E. Lander,et al.  Genetic Screens in Human Cells Using the CRISPR-Cas9 System , 2013, Science.

[11]  Sumana Sanyal,et al.  Type I interferon imposes a TSG101/ISG15 checkpoint at the Golgi for glycoprotein trafficking during influenza virus infection. , 2013, Cell host & microbe.

[12]  R. Jaenisch,et al.  One-Step Generation of Mice Carrying Reporter and Conditional Alleles by CRISPR/Cas-Mediated Genome Engineering , 2013, Cell.

[13]  Rudolf Jaenisch,et al.  One-Step Generation of Mice Carrying Mutations in Multiple Genes by CRISPR/Cas-Mediated Genome Engineering , 2013, Cell.

[14]  D. Carroll,et al.  Donor DNA Utilization During Gene Targeting with Zinc-Finger Nucleases , 2013, G3: Genes, Genomes, Genetics.

[15]  D. Aucoin,et al.  IgG Subclass and Heavy Chain Domains Contribute to Binding and Protection by mAbs to the Poly γ-D-glutamic Acid Capsular Antigen of Bacillus anthracis , 2013, PLoS pathogens.

[16]  James E. DiCarlo,et al.  RNA-Guided Human Genome Engineering via Cas9 , 2013, Science.

[17]  A. De,et al.  An Inhibitor of Nonhomologous End-Joining Abrogates Double-Strand Break Repair and Impedes Cancer Progression , 2012, Cell.

[18]  D. Sahoo,et al.  Identification and prospective isolation of a mesothelial precursor lineage giving rise to smooth muscle cells and fibroblasts for mammalian internal organs, and their vasculature , 2012, Nature Cell Biology.

[19]  J. Doudna,et al.  RNA-guided genetic silencing systems in bacteria and archaea , 2012, Nature.

[20]  Anne E Carpenter,et al.  Improved structure, function and compatibility for CellProfiler: modular high-throughput image analysis software , 2011, Bioinform..

[21]  Helga Thorvaldsdóttir,et al.  Integrative Genomics Viewer , 2011, Nature Biotechnology.

[22]  M. Jasin,et al.  Alternative end-joining is suppressed by the canonical NHEJ component Xrcc4/ligase IV during chromosomal translocation formation , 2010, Nature Structural &Molecular Biology.

[23]  F. Alt,et al.  Alternative end-joining catalyzes class switch recombination in the absence of both Ku70 and DNA ligase 4 , 2010, The Journal of experimental medicine.

[24]  R. Wadgaonkar,et al.  Sphingomyelin Synthase 2 Deficiency Attenuates NF&kgr;B Activation , 2008, Arteriosclerosis, thrombosis, and vascular biology.

[25]  T. Shaler,et al.  OS-9 and GRP94 deliver mutant α1-antitrypsin to the Hrd1–SEL1L ubiquitin ligase complex for ERAD , 2008, Nature Cell Biology.

[26]  M. Lieber,et al.  Genetic Interactions between BLM and DNA Ligase IV in Human Cells* , 2004, Journal of Biological Chemistry.

[27]  N. Ellis,et al.  Ku DNA end-binding protein modulates homologous repair of double-strand breaks in mammalian cells. , 2001, Genes & development.

[28]  H. Koyama,et al.  DNA ligase IV-deficient cells are more resistant to ionizing radiation in the absence of Ku70: Implications for DNA double-strand break repair , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[29]  F. Alt,et al.  Late embryonic lethality and impaired V (D)J recombination in mice lacking DNA ligase IV , 1998, Nature.

[30]  S. Tonegawa,et al.  TAP1 mutant mice are deficient in antigen presentation, surface class I molecules, and CD4−8+ T cells , 1992, Cell.

[31]  Arterioscler Thromb,et al.  Arteriosclerosis , 1925, Steinkopff.

[32]  H. Ploegh,et al.  Site-Specific Protein Labeling via Sortase-Mediated Transpeptidation. , 2017, Current protocols in protein science.

[33]  Feng Zhang,et al.  rNA-guided editing of bacterial genomes using crisPr-cas systems , 2016 .