Calcium indicator loading of neurons using single-cell electroporation

[1]  A. Konnerth,et al.  Dye loading with patch pipettes. , 2009, Cold Spring Harbor Protocols.

[2]  Lyle J. Graham,et al.  A method of combined single-cell electrophysiology and electroporation , 2007, Journal of Neuroscience Methods.

[3]  W. Krassowska,et al.  Modeling electroporation in a single cell. , 2007, Biophysical journal.

[4]  B. Sakmann,et al.  Spine Ca2+ Signaling in Spike-Timing-Dependent Plasticity , 2006, The Journal of Neuroscience.

[5]  Leonid L. Moroz,et al.  Electroporation of neurons and growth cones in Aplysia californica , 2006, Journal of Neuroscience Methods.

[6]  David S. Greenberg,et al.  Imaging input and output of neocortical networks in vivo. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[7]  O. Garaschuk,et al.  Cortical calcium waves in resting newborn mice , 2005, Nature Neuroscience.

[8]  Alexander Borst,et al.  In Vivo Performance of Genetically Encoded Indicators of Neural Activity in Flies , 2005, The Journal of Neuroscience.

[9]  D. Johnston,et al.  Target Cell-Dependent Normalization of Transmitter Release at Neocortical Synapses , 2005, Science.

[10]  Michael J. O'Donovan,et al.  Electroporation loading of calcium-sensitive dyes into the CNS. , 2005, Journal of neurophysiology.

[11]  Tobias Bonhoeffer,et al.  Local calcium transients regulate the spontaneous motility of dendritic filopodia , 2005, Nature Neuroscience.

[12]  Sooyoung Chung,et al.  Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex , 2005, Nature.

[13]  S. Okabe,et al.  Simultaneous observation of stably associated presynaptic varicosities and postsynaptic spines: morphological alterations of CA3–CA1 synapses in hippocampal slice cultures , 2005, Molecular and Cellular Neuroscience.

[14]  Karel Svoboda,et al.  Subcellular domain-restricted GABAergic innervation in primary visual cortex in the absence of sensory and thalamic inputs , 2004, Nature Neuroscience.

[15]  Karel Svoboda,et al.  Monitoring Neural Activity and [Ca2+] with Genetically Encoded Ca2+ Indicators , 2004, The Journal of Neuroscience.

[16]  F. Helmchen,et al.  Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo , 2004, Nature Methods.

[17]  V. Wimmer,et al.  Targeted in vivo expression of proteins in the calyx of Held , 2004, Pflügers Archiv.

[18]  Ricardo Toledo-Crow,et al.  Video-rate nonlinear microscopy of neuronal membrane dynamics with genetically encoded probes. , 2004, Journal of neurophysiology.

[19]  Takeharu Nagai,et al.  Functional Fluorescent Ca2+ Indicator Proteins in Transgenic Mice under TET Control , 2004, PLoS biology.

[20]  K. Svoboda,et al.  The Number of Glutamate Receptors Opened by Synaptic Stimulation in Single Hippocampal Spines , 2004, The Journal of Neuroscience.

[21]  B. Sakmann,et al.  Single Spine Ca2+ Signals Evoked by Coincident EPSPs and Backpropagating Action Potentials in Spiny Stellate Cells of Layer 4 in the Juvenile Rat Somatosensory Barrel Cortex , 2004, The Journal of Neuroscience.

[22]  J. Lübke,et al.  Postsynaptic Calcium Influx at Single Synaptic Contacts between Pyramidal Neurons and Bitufted Interneurons in Layer 2/3 of Rat Neocortex Is Enhanced by Backpropagating Action Potentials , 2004, The Journal of Neuroscience.

[23]  Hans-Ulrich Dodt,et al.  Visualization of neuronal form and function in brain slices by infrared videomicroscopy , 1998, The Histochemical Journal.

[24]  B. Sakmann,et al.  Patch-clamp recordings from the soma and dendrites of neurons in brain slices using infrared video microscopy , 1993, Pflügers Archiv.

[25]  E. Lambe,et al.  Hypocretin (Orexin) Induces Calcium Transients in Single Spines Postsynaptic to Identified Thalamocortical Boutons in Prefrontal Slice , 2003, Neuron.

[26]  Bert Sakmann,et al.  Supralinear Ca2+ Influx into Dendritic Tufts of Layer 2/3 Neocortical Pyramidal Neurons In Vitro and In Vivo , 2003, The Journal of Neuroscience.

[27]  Winfried Denk,et al.  Targeted Whole-Cell Recordings in the Mammalian Brain In Vivo , 2003, Neuron.

[28]  A. Konnerth,et al.  "In vivo" monitoring of neuronal network activity in zebrafish by two-photon Ca2+ imaging , 2003, Pflügers Archiv.

[29]  E. S. Ruthazer,et al.  Control of Axon Branch Dynamics by Correlated Activity in Vivo , 2003, Science.

[30]  Thomas Nevian,et al.  High-efficiency transfection of individual neurons using modified electrophysiology techniques , 2003, Journal of Neuroscience Methods.

[31]  C. Stosiek,et al.  In vivo two-photon calcium imaging of neuronal networks , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[32]  P. Webster,et al.  Optical recordings of Ca2+ signaling activities from identified inner ear cells in cochlear slices and hemicochleae. , 2003, Brain research. Brain research protocols.

[33]  Narayanan Kasthuri,et al.  Imaging calcium dynamics in the nervous system by means of ballistic delivery of indicators , 2002, Journal of Neuroscience Methods.

[34]  Jack Waters,et al.  Ca2+ imaging in the mammalian brain in vivo. , 2002, European journal of pharmacology.

[35]  B. Sakmann,et al.  In vivo, low-resistance, whole-cell recordings from neurons in the anaesthetized and awake mammalian brain , 2002, Pflügers Archiv.

[36]  Kurt Haas,et al.  Targeted electroporation in Xenopus tadpoles in vivo--from single cells to the entire brain. , 2002, Differentiation; research in biological diversity.

[37]  M. Rols,et al.  Direct visualization at the single-cell level of electrically mediated gene delivery , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[38]  R. Krumlauf,et al.  An impulse to the brain—using in vivo electroporation , 2001, Nature Neuroscience.

[39]  O Orwar,et al.  Electroporation of single cells and tissues with an electrolyte-filled capillary. , 2001, Analytical chemistry.

[40]  K. Svoboda,et al.  Ca2+ signaling in dendritic spines , 2001, Current Opinion in Neurobiology.

[41]  Kurt Haas,et al.  Single-Cell Electroporationfor Gene Transfer In Vivo , 2001, Neuron.

[42]  M. Prausnitz,et al.  Quantitative study of electroporation-mediated molecular uptake and cell viability. , 2001, Biophysical journal.

[43]  O Orwar,et al.  Characterization of single-cell electroporation by using patch-clamp and fluorescence microscopy. , 2000, Biophysical journal.

[44]  George J. Augustine,et al.  A Genetically Encoded Ratiometric Indicator for Chloride Capturing Chloride Transients in Cultured Hippocampal Neurons , 2000, Neuron.

[45]  J. Lichtman,et al.  Multicolor “DiOlistic” Labeling of the Nervous System Using Lipophilic Dye Combinations , 2000, Neuron.

[46]  Wade G Regehr,et al.  Monitoring Presynaptic Calcium Dynamics in Projection Fibers by In Vivo Loading of a Novel Calcium Indicator , 2000, Neuron.

[47]  S. Nelson,et al.  Hebb and homeostasis in neuronal plasticity , 2000, Current Opinion in Neurobiology.

[48]  K. Svoboda,et al.  Estimating intracellular calcium concentrations and buffering without wavelength ratioing. , 2000, Biophysical journal.

[49]  O. Garaschuk,et al.  Large-scale oscillatory calcium waves in the immature cortex , 2000, Nature Neuroscience.

[50]  R. Yuste,et al.  Optical probing of neuronal circuits with calcium indicators. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[51]  D. Tank,et al.  In vivo dendritic calcium dynamics in deep-layer cortical pyramidal neurons , 1999, Nature Neuroscience.

[52]  G. Augustine,et al.  A versatile microporation technique for the transfection of cultured CNS neurons , 1999, Journal of Neuroscience Methods.

[53]  W Krassowska,et al.  Modeling electroporation in a single cell. II. Effects Of ionic concentrations. , 1999, Biophysical journal.

[54]  W. Krassowska,et al.  Modeling electroporation in a single cell. I. Effects Of field strength and rest potential. , 1999, Biophysical journal.

[55]  J. Gehl,et al.  Determination of optimal parameters for in vivo gene transfer by electroporation, using a rapid in vivo test for cell permeabilization. , 1999, Biochemical and biophysical research communications.

[56]  R. Yuste,et al.  Detecting action potentials in neuronal populations with calcium imaging. , 1999, Methods.

[57]  Rafael Yuste,et al.  Imaging neurons : a laboratory manual , 1999 .

[58]  M. Berridge Neuronal Calcium Signaling , 1998, Neuron.

[59]  E Neumann,et al.  Mechanism of electroporative dye uptake by mouse B cells. , 1998, Biophysical journal.

[60]  T. Meyer,et al.  Electroporation-induced formation of individual calcium entry sites in the cell body and processes of adherent cells. , 1997, Biophysical journal.

[61]  D. Kleinfeld,et al.  In vivo dendritic calcium dynamics in neocortical pyramidal neurons , 1997, Nature.

[62]  B. Sakmann,et al.  Ca2+ buffering and action potential-evoked Ca2+ signaling in dendrites of pyramidal neurons. , 1996, Biophysical journal.

[63]  S Y Ho,et al.  Electroporation of cell membranes: a review. , 1996, Critical reviews in biotechnology.

[64]  Michael J. O'Donovan,et al.  Calcium imaging of rhythmic network activity in the developing spinal cord of the chick embryo , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[65]  George J. Augustine,et al.  Combining patch-clamp and optical methods in brain slices , 1994, Journal of Neuroscience Methods.

[66]  R. Tsien,et al.  A new generation of Ca2+ indicators with greatly improved fluorescence properties. , 1985, The Journal of biological chemistry.