Experimenting with prequential variations for data stream learning evaluation
暂无分享,去创建一个
Roberto Souto Maior de Barros | Juan Isidro González Hidalgo | Bruno Iran Ferreira Maciel | Roberto S. M. Barros | B. I. F. Maciel
[1] Albert Bifet,et al. DATA STREAM MINING A Practical Approach , 2009 .
[2] João Gama,et al. Learning with Drift Detection , 2004, SBIA.
[3] João Gama,et al. Issues in evaluation of stream learning algorithms , 2009, KDD.
[4] Albert Bifet,et al. Adaptive Stream Mining: Pattern Learning and Mining from Evolving Data Streams , 2010, Frontiers in Artificial Intelligence and Applications.
[5] Yun Sing Koh,et al. Detecting concept change in dynamic data streams , 2013, Machine Learning.
[6] Lei Du,et al. A Selective Detector Ensemble for Concept Drift Detection , 2015, Comput. J..
[7] M. Friedman. The Use of Ranks to Avoid the Assumption of Normality Implicit in the Analysis of Variance , 1937 .
[8] A. P. Dawid,et al. Present position and potential developments: some personal views , 1984 .
[9] Janez Demsar,et al. Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..
[10] Roberto Souto Maior de Barros,et al. A Boosting-like Online Learning Ensemble , 2016, 2016 International Joint Conference on Neural Networks (IJCNN).
[11] F. Ingeniería,et al. UNIVERSIDAD DE GRANMA , 2010 .
[12] W. Hoeffding. Probability Inequalities for sums of Bounded Random Variables , 1963 .
[13] Geoff Holmes,et al. New ensemble methods for evolving data streams , 2009, KDD.
[14] Roberto Souto Maior de Barros,et al. An overview and comprehensive comparison of ensembles for concept drift , 2019, Inf. Fusion.
[15] Geoff Hulten,et al. Mining high-speed data streams , 2000, KDD '00.
[16] Raghu Ramakrishnan,et al. Proceedings : KDD 2000 : the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, August 20-23, 2000, Boston, MA, USA , 2000 .
[17] Roberto Souto Maior de Barros,et al. A large-scale comparison of concept drift detectors , 2018, Inf. Sci..
[18] Robert V. Brill,et al. Applied Statistics and Probability for Engineers , 2004, Technometrics.
[19] Roberto Souto Maior de Barros,et al. A Lightweight Concept Drift Detection Ensemble , 2015, 2015 IEEE 27th International Conference on Tools with Artificial Intelligence (ICTAI).
[20] A. Dawid,et al. Prequential probability: principles and properties , 1999 .
[21] Lei Du,et al. Detecting concept drift: An information entropy based method using an adaptive sliding window , 2014, Intell. Data Anal..
[22] Roberto Souto Maior de Barros,et al. RCD: A recurring concept drift framework , 2013, Pattern Recognit. Lett..
[23] Roberto Souto Maior de Barros,et al. RDDM: Reactive drift detection method , 2017, Expert Syst. Appl..
[24] Isvani Frías Blanco. Nuevos métodos para el aprendizaje en flujos de datos no estacionarios , 2014 .
[25] Roberto Souto Maior de Barros,et al. Wilcoxon Rank Sum Test Drift Detector , 2018, Neurocomputing.
[26] Roberto Souto Maior de Barros,et al. Speeding Up Recovery from Concept Drifts , 2014, ECML/PKDD.
[27] Dimitris K. Tasoulis,et al. Exponentially weighted moving average charts for detecting concept drift , 2012, Pattern Recognit. Lett..
[28] Ron Larson,et al. Elementary Statistics: Picturing the World , 1999 .
[29] Roberto Souto Maior de Barros,et al. Online AdaBoost-based methods for multiclass problems , 2019, Artificial Intelligence Review.
[30] João Gama,et al. A survey on concept drift adaptation , 2014, ACM Comput. Surv..
[31] Koichiro Yamauchi,et al. Detecting Concept Drift Using Statistical Testing , 2007, Discovery Science.
[32] Ricard Gavaldà,et al. Learning from Time-Changing Data with Adaptive Windowing , 2007, SDM.
[33] Geoff Holmes,et al. MOA: Massive Online Analysis , 2010, J. Mach. Learn. Res..
[34] Tomasz Imielinski,et al. Database Mining: A Performance Perspective , 1993, IEEE Trans. Knowl. Data Eng..
[35] Roberto Souto Maior de Barros,et al. Optimizing the Parameters of Drift Detection Methods Using a Genetic Algorithm , 2015, ICTAI.
[36] A. Bifet,et al. Early Drift Detection Method , 2005 .
[37] Herna L. Viktor,et al. Fast Hoeffding Drift Detection Method for Evolving Data Streams , 2016, ECML/PKDD.
[38] James P. Braselton,et al. Multiple Comparison Methods for Means , 2002, SIAM Rev..
[39] O. Johnson. Information Theory And The Central Limit Theorem , 2004 .
[40] Roberto Souto Maior de Barros,et al. A comparative study on concept drift detectors , 2014, Expert Syst. Appl..
[41] João Gama,et al. On evaluating stream learning algorithms , 2012, Machine Learning.
[42] José del Campo-Ávila,et al. Online and Non-Parametric Drift Detection Methods Based on Hoeffding’s Bounds , 2015, IEEE Transactions on Knowledge and Data Engineering.