Low threshold, room-temperature microdisk lasers in the blue spectral range

InGaN-based active layers within microcavity resonators offer the potential of low threshold lasers in the blue spectral range. Here, we demonstrate optically pumped, room temperature lasing in high quality factor GaN microdisk cavities, containing InGaN quantum dots (QDs) with thresholds as low as 0.28 mJ/cm2. The demonstration of lasing action from GaN microdisk cavities with QDs in the active layer, provides a critical step for the nitrides in realizing low threshold photonic devices with efficient coupling between QDs and an optical cavity

[1]  T. Bretagnon,et al.  High quality factor photonic resonators for nitride quantum dots , 2012 .

[2]  Shuji Nakamura,et al.  GaN blue photonic crystal membrane nanocavities , 2005 .

[3]  D. K. Young Optoelectronic structures for semiconductor spintronics and quantum computation , 2002 .

[4]  J. Gilman,et al.  Nanotechnology , 2001 .

[5]  Nikolai N. Ledentsov,et al.  InGaAs-GaAs quantum-dot lasers , 1997 .

[6]  M. Holmes,et al.  Growth and optical characterisation of multilayers of InGaN quantum dots , 2012 .

[7]  Colin J. Humphreys,et al.  Highlighting threading dislocations in MOVPE-grown GaN using an in situ treatment with SiH4 and NH3 , 2006 .

[8]  Pallab Bhattacharya,et al.  Continuous-wave operation and differential gain of InGaN/GaN quantum dot ridge waveguide lasers (λ = 420 nm) on c-plane GaN substrate , 2012 .

[9]  P. Bhattacharya,et al.  A InGaN/GaN quantum dot green (λ=524 nm) laser , 2011 .

[10]  Seng-Tiong Ho,et al.  FDTD microcavity simulations: design and experimental realization of waveguide-coupled single-mode ring and whispering-gallery-mode disk resonators , 1997 .

[11]  Eric Feltin,et al.  High quality nitride based microdisks obtained via selective wet etching of AlInN sacrificial layers , 2008 .

[12]  A. Mizrahi,et al.  Thresholdless nanoscale coaxial lasers , 2011, Nature.

[13]  J. Carlin,et al.  Room temperature polariton luminescence from a GaN/AlGaN quantum well microcavity , 2006 .

[14]  Georg Rossbach,et al.  High quality factor two dimensional GaN photonic crystal cavity membranes grown on silicon substrate , 2012 .

[15]  Hao-Chung Kuo,et al.  Ultraviolet GaN-based microdisk laser with AlN/AlGaN distributed Bragg reflector , 2010 .

[16]  Hongxing Jiang,et al.  Optical resonance modes in InGaN/GaN multiple-quantum-well microring cavities , 1999 .

[17]  Robert A. Taylor,et al.  InGaN quantum dots grown by metalorganic vapor phase epitaxy employing a post-growth nitrogen anneal , 2003 .

[18]  Yean-Woei Kiang,et al.  A GaN photonic crystal membrane laser. , 2011, Nanotechnology.

[19]  S. Denbaars,et al.  Free-standing, optically pumped, GaN∕InGaN microdisk lasers fabricated by photoelectrochemical etching , 2004 .

[20]  Richard K. Chang,et al.  Stimulated emission and lasing in whispering-gallery modes of GaN microdisk cavities , 1999 .

[21]  Shuji Nakamura,et al.  Room-temperature continuous-wave lasing in GaN/InGaN microdisks , 2007 .

[22]  T. Someya,et al.  Room-temperature lasing oscillation in an InGaN self-assembled quantum dot laser , 1999 .

[23]  E. Hu,et al.  Dislocation density-dependent quality factors in InGaN quantum dot containing microdisks , 2011 .

[24]  T. Lu,et al.  GaN-based photonic crystal surface emitting lasers with central defects , 2011 .