Two-photon solvatochromism II: experimental and theoretical study of solvent effects on the two-photon absorption spectrum of Reichardt's dye.

In this study, we report on the influence of solvent on the two-photon absorption (2PA) spectra of Reichardt's dye (RD). The measurement of 2PA cross-sections is performed for three solvents (chloroform, dimethyl formamide, and dimethyl sulfoxide) using the Z-scan technique. The key finding of this study is the observation that the cross-section, corresponding to the 2PA of the intramolecular charge-transfer state, diminishes substantially upon increasing the solvent polarity. To unravel the solvent dependence of the 2PA cross-section, the electronic structure of RD is determined using a hybrid quantum mechanics/molecular mechanics (QM/MM) approach, in which polarization between the solute and solvent is taken into account by using a self-consistent scheme in the solvent polarization. The two-state approximation proves to be adequate for the studied system, and allowed the observed solvent-polarity-induced decrease of the 2PA cross-section to be related to the decrease of the transition moment and the increase in the excitation energy.

[1]  Kurt V. Mikkelsen,et al.  Failures of TDDFT in describing the lowest intramolecular charge-transfer excitation in para-nitroaniline , 2013 .

[2]  I. Renge Motional narrowing of broadband absorption of solvatochromic indicator Betaine 30 , 2009 .

[3]  J. O. Morley,et al.  Experimental and computational studies on the solvatochromism and thermochromism of 4-pyridiniophenolates , 2002 .

[4]  P. Rossky,et al.  Solvent and Intramolecular Effects on the Absorption Spectrum of Betaine-30 , 2000 .

[5]  C. Hunter,et al.  Molecular probes of solvation phenomena. , 2012, Chemical Society reviews.

[6]  P. K. Das,et al.  Absorption spectral band width of charge transfer transition of E(T)(30) dye in homogeneous and heterogeneous media. , 2003, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[7]  M. Samoć,et al.  Electrochemical switching of the cubic nonlinear optical properties of an aryldiethynyl-linked heterobimetallic complex between three distinct states. , 2006, Angewandte Chemie.

[8]  C. Reichardt,et al.  Syntheses and UV–visible spectroscopic properties of new ‘fluorophilic’ fluorine‐ and perfluoroalkyl‐substituted solvatochromic pyridinium N‐phenolate betaine dyes , 2001 .

[9]  A. Kundt Ueber den Einfluss des Lösungsmittels auf die Absorptionsspectra gelöster absorbierender Medien , 1878 .

[10]  C. Reichardt Polarity of ionic liquids determined empirically by means of solvatochromic pyridinium N-phenolate betaine dyes , 2005 .

[11]  M. Samoć,et al.  Two-photon solvatochromism. I. Solvent effects on two-photon absorption cross section of 4-dimethylamino-4′-nitrostilbene (DANS) , 2012 .

[12]  J. Tomasi,et al.  Quantum mechanical continuum solvation models. , 2005, Chemical reviews.

[13]  R. McKelvey,et al.  Convergent Synthesis of Betaine-30, a Solvatochromic Dye: An Advanced Undergraduate Project and Demonstration , 1996 .

[14]  Timothy Clark,et al.  A numerical self-consistent reaction field (SCRF) model for ground and excited states in NDDO-based methods , 1993 .

[15]  Shiguo Zhang,et al.  Distinct influence of the anion and ether group on the polarity of ammonium and imidazolium ionic liquids , 2012 .

[16]  Roosevelt Shaw,et al.  Visual demonstration of solvent polarities , 1994 .

[17]  Yi Luo,et al.  Novel heterocycle-based organic molecules with two-photon induced blue fluorescent emission , 2003 .

[18]  Lixin Zheng,et al.  Two-dimensional two-photon absorbing chromophores and solvent effects on their cross-sections , 2003, SPIE Optics + Photonics.

[19]  W. Bartkowiak Solvatochromism and Nonlinear Optical Properties of Donor-acceptor π-Conjugated Molecules , 2006 .

[20]  C. Reichardt,et al.  Pyridinium N-Phenoxide Betaines and Their Application to the Characterization of Solvent Polarities, XX. – Synthesis, Solvatochromism, and Halochromism of Chromoionophoric Crown Ether-substituted Pyridinium N-Phenolate Betaine Dyes , 1993 .

[21]  S. Boxer,et al.  Effective Polarity of Frozen Solvent Glasses in the Vicinity of Dipolar Solutes , 1998 .

[22]  W. Bartkowiak,et al.  Conformation and Solvent Dependence of the First Molecular Hyperpolarizability of Pyridinium-N-Phenoxide Betaine Dyes. Quantum Chemical Calculations , 1998 .

[23]  M. Beckett,et al.  A computer simulation of the solvation of a solvatochromic pyridinium betaine , 1989 .

[24]  E. W. Stryland,et al.  Linear and two-photon photophysical properties of a series of symmetrical diphenylaminofluorenes , 2004 .

[25]  C. Reichardt,et al.  Solvatochromic Dyes as Solvent Polarity Indicators , 1994 .

[26]  Benoît Champagne,et al.  Assessment of Conventional Density Functional Schemes for Computing the Polarizabilities and Hyperpolarizabilities of Conjugated Oligomers: An Ab Initio Investigation of Polyacetylene Chains , 1998 .

[27]  V. Machado,et al.  An Easy and Versatile Experiment to Demonstrate Solvent Polarity Using Solvatochromic Dyes , 2001 .

[28]  H. Ågren,et al.  Hybrid density functional theory/molecular mechanics calculations of two-photon absorption of dimethylamino nitro stilbene in solution. , 2011, Physical chemistry chemical physics : PCCP.

[29]  C. Chiappe,et al.  Ionic liquids: solvent properties and organic reactivity , 2005 .

[30]  E. W. Stryland,et al.  Sensitive Measurement of Optical Nonlinearities Using a Single Beam Special 30th Anniversary Feature , 1990 .

[31]  H. Ågren,et al.  Two-photon absorption in solution by means of time-dependent density-functional theory and the polarizable continuum model. , 2005, The Journal of chemical physics.

[32]  S. Kovalenko,et al.  Charge Transfer and Solvation of Betaine-30 in Polar SolventsA Femtosecond Broadband Transient Absorption Study , 2001 .

[33]  H. Y. Woo,et al.  Water-soluble [2.2]paracyclophane chromophores with large two-photon action cross sections. , 2005, Journal of the American Chemical Society.

[34]  C. Reichardt Pyridinium-N-phenolate betaine dyes as empirical indicators of solvent polarity: Some new findings , 2008 .

[35]  Giovanni Scalmani,et al.  First hyperpolarizability of polymethineimine with long-range corrected functionals. , 2007, The Journal of chemical physics.

[36]  K. Stadnicka,et al.  Conformation and interactions of 4-(pyridinium-1-yl)-phenolate betaine-dye and its cation in the crystalline state , 2006 .

[37]  C. Reichardt,et al.  A new application of solvatochromic pyridinium-N-phenolate betaine dyes: examining the electrophilicity of lanthanide shift reagents , 2010 .

[38]  Y. Yoshida,et al.  Environmental Effects on Photochemical Properties of Betaine Dyes in Rigid Media , 2008 .

[39]  E. Meehan,et al.  Synthesis and characterization of a novel betaine dye: 2,4-dimethyl-6-(2,4,6-triphenyl-N-pyridinio)phenolate , 1989 .

[40]  M. Blanchard‐Desce,et al.  Linear and two-photon absorption properties of interacting polar chromophores: standard and unconventional effects. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[41]  W. M. McClain,et al.  Polarization Dependence of the Two-Photon Absorption of Tumbling Molecules with Application to Liquid 1-Chloronaphthalene and Benzene , 1970 .

[42]  E. Mcrae,et al.  Solvent Effects in Organic Spectra: Dipole Forces and the Franck–Condon Principle , 1954 .

[43]  J. Catalán,et al.  On the molecular structure and UV/vis spectroscopic properties of the solvatochromic and thermochromic pyridinium-N-phenolate betaine dye B30. , 2010, The journal of physical chemistry. A.

[44]  J. M. Harris,et al.  Synthesis and characterization of some pyridinium N-phenoxide betaine dyes for second-harmonic generation , 1991 .

[45]  J. Clark,et al.  The use of Reichardt's dye as an indicator of surface polarity , 1999 .

[46]  Ke Zhao,et al.  Solvent effects on the electronic structure of a newly synthesized two-photon polymerization initiator , 2003 .

[47]  Alan E. Johnson,et al.  Evidence for intermolecular hydrogen-bond rearrangement in the electron transfer dynamics of betaine-30 in n-butanol , 1994 .

[48]  N. S. Bayliss The Effect of the Electrostatic Polarization of the Solvent on Electronic Absorption Spectra in Solution , 1950 .

[49]  M. Chattopadhyaya,et al.  Enhancement of twist angle dependent two-photon activity through the proper alignment of ground to excited state and excited state dipole moment vectors. , 2012, The journal of physical chemistry. A.

[50]  G. Koeckelberghs,et al.  Effect of solvent-induced coil to helix conformational change on the two-photon absorption spectrum of poly(3,6-phenanthrene). , 2012, The journal of physical chemistry. B.

[51]  M. Maroncelli,et al.  COMPUTER SIMULATIONS OF THE SOLVATOCHROMISM OF BETAINE-30 , 1999 .

[52]  L. Montero-Cabrera,et al.  Single configuration interaction study on conjugated betainic chromophores based on DFT optimized geometries , 1999 .

[53]  A. Osuka,et al.  Versatile photophysical properties of meso-aryl-substituted subporphyrins: dipolar and octupolar charge-transfer interactions. , 2009, Chemistry.

[54]  Denis Jacquemin,et al.  Assessment of Conventional Density Functional Schemes for Computing the Dipole Moment and (Hyper)polarizabilities of Push−Pull π-Conjugated Systems† , 2000 .

[55]  W. Acree,et al.  Selection of an Analysis Wavelength: An Interesting Example Involving Solvatochromism and the Zwitterionic Dimroth-Reichardt's Betaine ET-30 Dye , 1999 .

[56]  W. Bartkowiak,et al.  Conformation and solvent dependence of the first and second molecular hyperpolarizabilities of charge-transfer chromophores. Quantum-chemical calculations , 1999 .

[57]  Jacob Kongsted,et al.  Excited States in Solution through Polarizable Embedding , 2010 .

[58]  A. Kawski,et al.  Zur Theorie des Einflusses von Lösungsmitteln auf die Elektronenspektren der Moleküle , 1962 .

[59]  C. Reichardt,et al.  Probing of chemically modified silica surfaces by solvatochromic pyridinium N-phenolate betaine indicators , 2006 .

[60]  C. Reichardt,et al.  Pyridinium N-Phenoxide Betaines and Their Application to the Characterization of Solvent Polarities, XXIII†. Determination of ET(30) Values of Supercritical Carbon Dioxide at Various Pressures and Temperatures , 1997 .

[61]  M. Samoć,et al.  Organometallic complexes for nonlinear optics. 30.1 electrochromic linear and nonlinear optical properties of alkynylbis(diphosphine)ruthenium complexes. , 2003, Journal of the American Chemical Society.

[62]  Yuzhi Song,et al.  Solvent effects on two-photon absorption cross sections of a newly synthesized polymerization initiator , 2006 .

[63]  P. Ogilby,et al.  Effect of solvent on two-photon absorption by vinyl benzene derivatives. , 2008, The journal of physical chemistry. A.

[64]  P. Rossky,et al.  COMPUTER SIMULATION OF THE EXCITED STATE DYNAMICS OF BETAINE-30 IN ACETONITRILE , 1999 .

[65]  Claudine Katan,et al.  Charge instability in quadrupolar chromophores: symmetry breaking and solvatochromism. , 2006, Journal of the American Chemical Society.

[66]  Yuanjing Cui,et al.  Solvent effect on two-photon absorption (TPA) of three novel dyes with large TPA cross-section and red emission , 2013 .

[67]  M. Vitha Determining the Percent Water in Organic Solvents Using the Zwitterionic Dimroth-Reichardt Betaine ET-30 Dye. An Industrially Relevant Application of a Previously Published Laboratory Experiment , 2001 .

[68]  H. G. Drickamer,et al.  Pressure-induced solvatochromism of the charge-transfer transitions in pyridinium betaines , 1989 .

[69]  Yi Luo,et al.  Solvent-induced two-photon absorption of a push-pull molecule , 2000 .

[70]  J. Leszczynski,et al.  Solvent Effects on Conformationally Induced Enhancement of the Two-Photon Absorption Cross Section of a Pyridinium-N-Phenolate Betaine Dye. A Quantum Chemical Study , 2002 .

[71]  M. Samoć,et al.  Switching the cubic nonlinear optical properties of an electro-, halo-, and photochromic ruthenium alkynyl complex across six states. , 2009, Angewandte Chemie.

[72]  C. Breneman,et al.  Determining atom‐centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis , 1990 .

[73]  Sylvio Canuto,et al.  The role of molecular conformation and polarizable embedding for one- and two-photon absorption of disperse orange 3 in solution. , 2012, The journal of physical chemistry. B.

[74]  Christian Reichardt,et al.  Über Pyridinium-N-phenolat-Betaine und ihre Verwendung zur Charakterisierung der Polarität von Lösungsmitteln, X. Erweiterung, Korrektur und Neudefinition der ET-Lösungsmittelpolaritätsskala mit Hilfe eines lipophilen penta-tert-butyl-substituierten Pyridinium-N-phenolat-Betainfarbstoffes , 1983 .

[75]  P. N. Day,et al.  Calculation of two-photon absorption spectra of donor-pi-acceptor compounds in solution using quadratic response time-dependent density functional theory. , 2006, The Journal of chemical physics.

[76]  K. Dimroth,et al.  Über Pyridinium‐N‐phenol‐betaine und ihre Verwendung zur Charakterisierung der Polarität von Lösungsmitteln , 1963 .

[77]  J. Burt,et al.  Thermosolvatochromism of Betaine-30 in CH3CN , 2001 .

[78]  A. Hantzsch Über die Halochromie und »Solvatochromie« des Dibenzal-acetons und einfacherer Ketone, sowie ihrer Ketochloride , 1922 .

[79]  Anilesh Kumar,et al.  Do anions influence the polarity of protic ionic liquids? , 2012, Physical chemistry chemical physics : PCCP.

[80]  Mark W Grinstaff,et al.  Dendritic molecular capsules for hydrophobic compounds. , 2003, Journal of the American Chemical Society.

[81]  Yuzuru Ooshika,et al.  Absorption Spectra of Dyes in Solution , 1954 .

[82]  B. Strehmel,et al.  The Influence of σ and π Acceptors on Two‐Photon Absorption and Solvatochromism of Dipolar and Quadrupolar Unsaturated Organic Compounds , 2003 .

[83]  C. Eckert,et al.  Determination of solvatochromic solvent parameters for the characterization of gas-expanded liquids , 2005 .

[84]  Anne Myers Kelley,et al.  Solvent effects on resonant first hyperpolarizabilities and Raman and hyper-Raman spectra of DANS and a water-soluble analog. , 2006, The Journal of chemical physics.

[85]  F. J. Knorr,et al.  Temperature-dependent absorption spectrum of betaine-30 in methanol , 2002 .

[86]  Alan E. Johnson,et al.  Temperature dependence of the inverted regime electron transfer kinetics of betaine‐30 and the role of molecular modes , 1992 .

[87]  H. Ågren,et al.  Role of dynamic flexibility in computing solvatochromic properties of dye-solvent systems: o-betaine in water. , 2009, The journal of physical chemistry. A.

[88]  K. Zhao,et al.  Effects of isomerism on two-photon absorption of substituted benzenes with two pairs of donor–acceptors , 2011 .

[89]  N. Mataga,et al.  Solvent Effects upon Fluorescence Spectra and the Dipolemoments of Excited Molecules , 1956 .

[90]  M. Zerner,et al.  Solvent effects on the electronic spectrum of Reichardt's dye , 1994 .

[91]  K. Bhanuprakash,et al.  Theoretical studies on the non-linear optical properties of some organic molecules: effect of π–σ–π through-bond coupling on the first hyperpolarisability , 1999 .

[92]  J. Burt,et al.  Resonance Raman analysis of nonlinear solvent dynamics: betaine-30 in ethanol. , 2004, The Journal of chemical physics.

[93]  Junmei Wang,et al.  Development and testing of a general amber force field , 2004, J. Comput. Chem..

[94]  Z. Soos,et al.  Essential state model for two-photon absorption spectra of polymethine dyes. , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.

[95]  H. Y. Woo,et al.  Solvent effects on the two-photon absorption of distyrylbenzene chromophores. , 2005, Journal of the American Chemical Society.

[96]  C. Reichardt Solvatochromism, thermochromism, piezochromism, halochromism, and chiro-solvatochromism of pyridinium N-phenoxide betaine dyes , 1992 .

[97]  C. Pomelli,et al.  Influence of structural variations in cationic and anionic moieties on the polarity of ionic liquids. , 2011, The journal of physical chemistry. B.

[98]  Yi Luo,et al.  Generalized few-state models for two-photon absorption of conjugated molecules , 2002 .

[99]  W. Bartkowiak,et al.  Solvent Effect on the Electronic Structure of Molecules Studied by the Langevin Dipoles/Monte Carlo Approach , 1997 .

[100]  M. C. Rezende,et al.  In search of the thermo/halochromism of the E(T)(30) pyridinium-N-phenolate betaine dye. , 2012, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[101]  P. Jasien,et al.  A CIS study of solvent effects on the electronic absorption spectrum of Reichardt's dye , 2001 .

[102]  Gulliver T. Dalton,et al.  Independent switching of cubic nonlinear optical properties in a ruthenium alkynyl cruciform complex by employing protic and electrochemical stimuli(1). , 2007, Journal of the American Chemical Society.

[103]  Zhifu Liu,et al.  Ultralarge hyperpolarizability twisted pi-electron system electro-optic chromophores: synthesis, solid-state and solution-phase structural characteristics, electronic structures, linear and nonlinear optical properties, and computational studies. , 2007, Journal of the American Chemical Society.

[104]  Jacob Kongsted,et al.  Density functional self-consistent quantum mechanics/molecular mechanics theory for linear and nonlinear molecular properties: Applications to solvated water and formaldehyde. , 2007, The Journal of chemical physics.

[105]  Y. Yoshida,et al.  Luminescence of Betaine-30 Dispersed in Polymeric Solids , 2006 .

[106]  Tom Welton,et al.  Solvents and Solvent Effects in Organic Chemistry: REICHARDT:SOLV.EFF. 4ED O-BK , 2010 .

[107]  P. N. Day,et al.  TDDFT study of one- and two-photon absorption properties: donor-pi-acceptor chromophores. , 2005, The journal of physical chemistry. B.

[108]  D. Matyushov,et al.  A Thermodynamic Analysis of the p* and E T (30) Polarity Scales , 1997 .

[109]  Stephen J. Lee,et al.  Dendritic supramolecular assemblies for drug delivery. , 2005, Chemical communications.

[110]  C. Reichardt,et al.  Über Pyridinium-N-phenolat-Betaine und ihre Verwendung zur Charakterisierung der Polarität von Lösungsmitteln, XVIII. Synthese und UV/Vis-spektroskopische Eigenschaften eines negativ solvatochromen Pyridinium-N-thiophenolat-Betainfarbstoffs , 1991 .

[111]  Two-photon absorption of [2.2]paracyclophane derivatives in solution: a theoretical investigation. , 2007, The Journal of chemical physics.

[112]  H. Y. Woo,et al.  Two-photon absorption in aqueous micellar solutions. , 2005, Journal of the American Chemical Society.

[113]  Alan E. Johnson,et al.  Specific excitation of the solvent coordinate in the S3→S1 and S1→S0 radiationless decay of the betaines , 1992 .

[114]  H. Ågren,et al.  Two-photon absorption of hydrogen-bonded octupolar molecule clusters. , 2008, The journal of physical chemistry. B.

[115]  S. E. Sheppard The Effects of Environment and Aggregation on the Absorption Spectra of Dyes , 1942 .

[116]  K. Ruud,et al.  High-Polarity Solvents Decreasing the Two-Photon Transition Probability of Through-Space Charge-Transfer Systems - A Surprising In Silico Observation. , 2012, The journal of physical chemistry letters.

[117]  T. Abe Theoretical Treatment of Solvent Effects on the Frequency Shifts of Electronic Spectra of Anions , 1981 .

[118]  N. Handy,et al.  A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP) , 2004 .

[119]  P. Krawczyk,et al.  Theoretical study of one- and two-photon absorption spectra of azoaromatic compounds. , 2009, The Journal of chemical physics.

[120]  P. Suppan Excited-state dipole moments from absorption/fluorescence solvatochromic ratios , 1983 .

[121]  Trygve Helgaker,et al.  Excitation energies in density functional theory: an evaluation and a diagnostic test. , 2008, The Journal of chemical physics.

[122]  S. Qian,et al.  Enhanced two-photon absorption and ultrafast dynamics of a new multibranched chromophore with a dibenzothiophene core. , 2007, The journal of physical chemistry. A.

[123]  Yi Luo,et al.  Solvent effects on two-photon absorption of dialkylamino substituted distyrylbenzene chromophore. , 2007, The Journal of chemical physics.

[124]  M. Chattopadhyaya,et al.  Solvent induced channel interference in the two-photon absorption process--a theoretical study with a generalized few-state-model in three dimensions. , 2012, Physical chemistry chemical physics : PCCP.

[125]  K. Mikkelsen,et al.  Two-photon absorption cross sections: an investigation of solvent effects. Theoretical studies on formaldehyde and water. , 2006, The Journal of chemical physics.

[126]  W. Rettig,et al.  Experimental and theoretical study of excited-state structure and relaxation processes of betaine-30 and of pyridinium model compounds. , 2009, The journal of physical chemistry. A.

[127]  P. Barbara,et al.  DYNAMIC SOLVENT EFFECT ON BETAINE-30 ELECTRON-TRANSFER KINETICS IN ALCOHOLS , 1995 .

[128]  P. Rossky,et al.  Solvent Effects on Solute Electronic Structure and Properties: Theoretical Study of a Betaine Dye Molecule in Polar Solvents , 2001 .

[129]  W. Werncke,et al.  Vibrational analysis and excited-state geometric changes of betaine-30 derived from Raman and infrared spectra combined withab initio calculations , 2000 .

[130]  Shin-ichiro Kato,et al.  Novel 2,1,3-benzothiadiazole-based red-fluorescent dyes with enhanced two-photon absorption cross-sections. , 2006, Chemistry.