Convolutional Spatial Attention Model for Reading Comprehension with Multiple-Choice Questions

Machine Reading Comprehension (MRC) with multiplechoice questions requires the machine to read given passage and select the correct answer among several candidates. In this paper, we propose a novel approach called Convolutional Spatial Attention (CSA) model which can better handle the MRC with multiple-choice questions. The proposed model could fully extract the mutual information among the passage, question, and the candidates, to form the enriched representations. Furthermore, to merge various attention results, we propose to use convolutional operation to dynamically summarize the attention values within the different size of regions. Experimental results show that the proposed model could give substantial improvements over various state-of- the-art systems on both RACE and SemEval-2018 Task11 datasets.

[1]  Wentao Ma,et al.  HFL-RC System at SemEval-2018 Task 11: Hybrid Multi-Aspects Model for Commonsense Reading Comprehension , 2018, ArXiv.

[2]  Jian Zhang,et al.  SQuAD: 100,000+ Questions for Machine Comprehension of Text , 2016, EMNLP.

[3]  Matthew Richardson,et al.  MCTest: A Challenge Dataset for the Open-Domain Machine Comprehension of Text , 2013, EMNLP.

[4]  Danqi Chen,et al.  A Thorough Examination of the CNN/Daily Mail Reading Comprehension Task , 2016, ACL.

[5]  Yuxing Peng,et al.  Reinforced Mnemonic Reader for Machine Comprehension , 2017 .

[6]  Xiaodong Liu,et al.  Towards Human-level Machine Reading Comprehension: Reasoning and Inference with Multiple Strategies , 2017, ArXiv.

[7]  Jeffrey Pennington,et al.  GloVe: Global Vectors for Word Representation , 2014, EMNLP.

[8]  Luke S. Zettlemoyer,et al.  Deep Contextualized Word Representations , 2018, NAACL.

[9]  Wei Zhao,et al.  Yuanfudao at SemEval-2018 Task 11: Three-way Attention and Relational Knowledge for Commonsense Machine Comprehension , 2018, SemEval@NAACL-HLT.

[10]  Mitesh M. Khapra,et al.  ElimiNet: A Model for Eliminating Options for Reading Comprehension with Multiple Choice Questions , 2018, IJCAI.

[11]  Ting Liu,et al.  Attention-over-Attention Neural Networks for Reading Comprehension , 2016, ACL.

[12]  Ming Zhou,et al.  Gated Self-Matching Networks for Reading Comprehension and Question Answering , 2017, ACL.

[13]  Yelong Shen,et al.  FusionNet: Fusing via Fully-Aware Attention with Application to Machine Comprehension , 2017, ICLR.

[14]  Quoc V. Le,et al.  QANet: Combining Local Convolution with Global Self-Attention for Reading Comprehension , 2018, ICLR.

[15]  Rudolf Kadlec,et al.  Text Understanding with the Attention Sum Reader Network , 2016, ACL.

[16]  Jürgen Schmidhuber,et al.  Framewise phoneme classification with bidirectional LSTM and other neural network architectures , 2005, Neural Networks.

[17]  Ruslan Salakhutdinov,et al.  Gated-Attention Readers for Text Comprehension , 2016, ACL.

[18]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[19]  Ali Farhadi,et al.  Bidirectional Attention Flow for Machine Comprehension , 2016, ICLR.

[20]  Jürgen Schmidhuber,et al.  Highway Networks , 2015, ArXiv.

[21]  J. Koenderink Q… , 2014, Les noms officiels des communes de Wallonie, de Bruxelles-Capitale et de la communaute germanophone.

[22]  Furu Wei,et al.  Hierarchical Attention Flow for Multiple-Choice Reading Comprehension , 2018, AAAI.

[23]  Yuan Yu,et al.  TensorFlow: A system for large-scale machine learning , 2016, OSDI.

[24]  Steven Bird,et al.  NLTK: The Natural Language Toolkit , 2002, ACL.

[25]  Phil Blunsom,et al.  Teaching Machines to Read and Comprehend , 2015, NIPS.

[26]  Guokun Lai,et al.  RACE: Large-scale ReAding Comprehension Dataset From Examinations , 2017, EMNLP.

[27]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[28]  Richard Socher,et al.  Dynamic Coattention Networks For Question Answering , 2016, ICLR.

[29]  Jason Weston,et al.  The Goldilocks Principle: Reading Children's Books with Explicit Memory Representations , 2015, ICLR.

[30]  Simon Ostermann,et al.  SemEval-2018 Task 11: Machine Comprehension Using Commonsense Knowledge , 2018, *SEMEVAL.