Non-parametric calibration of jump–diffusion option pricing models

We present a non-parametric method for calibrating jump-diffusion models to a set of observed option prices. We show that the usual formulations of the inverse problem via nonlinear least squares are ill-posed. In the realistic case where the set of observed prices is discrete and finite, we propose a regularization method based on relative entropy: we reformulate our calibration problem into a problem of finding a risk neutral jump-diffusion model that reproduces the observed option prices and has the smallest possible relative entropy with respect to a chosen prior model. We discuss the numerical implementation of our method using a gradient based optimization and show via simulation tests on various examples that using the entropy penalty resolves the numerical instability of the calibration problem. Finally, we apply our method to empirical data sets of index options and discuss the empirical results obtained.

[1]  V. Morozov On the solution of functional equations by the method of regularization , 1966 .

[2]  R. C. Merton,et al.  Option pricing when underlying stock returns are discontinuous , 1976 .

[3]  A. Shiryaev,et al.  Limit Theorems for Stochastic Processes , 1987 .

[4]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[5]  David S. Bates Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Thephlx Deutschemark Options , 1993 .

[6]  Bruno Dupire Pricing with a Smile , 1994 .

[7]  W. Press,et al.  Numerical Recipes in Fortran: The Art of Scientific Computing.@@@Numerical Recipes in C: The Art of Scientific Computing. , 1994 .

[8]  Jorge Nocedal,et al.  A Limited Memory Algorithm for Bound Constrained Optimization , 1995, SIAM J. Sci. Comput..

[9]  David S. Bates Testing Option Pricing Models , 1995 .

[10]  Andrew W. Lo,et al.  Nonparametric estimation of state-price densities implicit in financial asset prices , 1995, Proceedings of 1995 Conference on Computational Intelligence for Financial Engineering (CIFEr).

[11]  Koponen,et al.  Analytic approach to the problem of convergence of truncated Lévy flights towards the Gaussian stochastic process. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[12]  Ole E. Barndorff-Nielsen,et al.  Processes of normal inverse Gaussian type , 1997, Finance Stochastics.

[13]  P. Carr,et al.  The Variance Gamma Process and Option Pricing , 1998 .

[14]  David S. Bates Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options , 1998 .

[15]  E. Eberlein,et al.  New Insights into Smile, Mispricing, and Value at Risk: The Hyperbolic Model , 1998 .

[16]  P. Carr,et al.  Option valuation using the fast Fourier transform , 1999 .

[17]  Jesper Andreasen,et al.  Jump-Diffusion Processes: Volatility Smile Fitting and Numerical Methods for Pricing , 1999 .

[18]  Nicole El Karoui,et al.  Pricing Via Utility Maximization and Entropy , 2000 .

[19]  R. Wolpert Lévy Processes , 2000 .

[20]  M. Frittelli The Minimal Entropy Martingale Measure and the Valuation Problem in Incomplete Markets , 2000 .

[21]  O. Barndorff-Nielsen,et al.  Lévy processes : theory and applications , 2001 .

[22]  Ludger Rüschendorf,et al.  Minimax and minimal distance martingale measures and their relationship to portfolio optimization , 2001, Finance Stochastics.

[23]  Cecilia Mancini,et al.  Disentangling the jumps of the diffusion in a geometric jumping Brownian motion , 2001 .

[24]  Robert Buff,et al.  WEIGHTED MONTE CARLO: A NEW TECHNIQUE FOR CALIBRATING ASSET-PRICING MODELS , 2001 .

[25]  Dominick Samperi,et al.  Calibrating a Diffusion Pricing Model with Uncertain Volatility: Regularization and Stability , 2002 .

[26]  Dilip B. Madan,et al.  Option Pricing Using Variance Gamma Markov Chains , 2002 .

[27]  Rama Cont,et al.  Dynamics of implied volatility surfaces , 2002 .

[28]  M. Yor,et al.  The Fine Structure of Asset Retums : An Empirical Investigation ' , 2006 .

[29]  Steven Kou,et al.  A Jump Diffusion Model for Option Pricing , 2001, Manag. Sci..

[30]  Yoshio Miyahara,et al.  The minimal entropy martingale measures for geometric Lévy processes , 2003, Finance Stochastics.

[31]  R. Cont,et al.  Non-parametric calibration of jump–diffusion option pricing models , 2004 .

[32]  R. Schilling Financial Modelling with Jump Processes , 2005 .