Diversity of insulin-like peptide signaling system proteins in Calanus finmarchicus (Crustacea; Copepoda) - Possible contributors to seasonal pre-adult diapause.

[1]  Kaiyun Fu,et al.  Knockdown of a putative insulin-like peptide gene LdILP2 in Leptinotarsa decemlineata by RNA interference impairs pupation and adult emergence. , 2016, Gene.

[2]  A. Christie Prediction of Scylla olivacea (Crustacea; Brachyura) peptide hormones using publicly accessible transcriptome shotgun assembly (TSA) sequences. , 2016, General and comparative endocrinology.

[3]  D. Schulz,et al.  Neuropeptidergic Signaling in the American Lobster Homarus americanus: New Insights from High-Throughput Nucleotide Sequencing , 2015, PloS one.

[4]  Robert D. Finn,et al.  The Pfam protein families database: towards a more sustainable future , 2015, Nucleic Acids Res..

[5]  A. Christie,et al.  Prediction of the neuropeptidomes of members of the Astacidea (Crustacea, Decapoda) using publicly accessible transcriptome shotgun assembly (TSA) sequence data. , 2015, General and comparative endocrinology.

[6]  J. Veenstra The power of next-generation sequencing as illustrated by the neuropeptidome of the crayfish Procambarus clarkii. , 2015, General and comparative endocrinology.

[7]  A. Christie In silico prediction of a neuropeptidome for the eusocial insect Mastotermes darwiniensis. , 2015, General and comparative endocrinology.

[8]  A. Christie,et al.  Identification of the first neuropeptides from the enigmatic hexapod order Protura. , 2015, General and comparative endocrinology.

[9]  Huiyang Huang,et al.  Neuropeptides in the cerebral ganglia of the mud crab, Scylla paramamosain: transcriptomic analysis and expression profiles during vitellogenesis , 2015, Scientific Reports.

[10]  A. Christie Neuropeptide discovery in Symphylella vulgaris (Myriapoda, Symphyla): In silico prediction of the first myriapod peptidome. , 2015, General and comparative endocrinology.

[11]  C. Tyler,et al.  De novo assembly of the Carcinus maenas transcriptome and characterization of innate immune system pathways , 2015, BMC Genomics.

[12]  M. Cohn,et al.  A conserved genetic mechanism specifies deutocerebral appendage identity in insects and arachnids , 2015, Proceedings of the Royal Society B: Biological Sciences.

[13]  Y. Passamaneck,et al.  Glutathione S-Transferase (GST) Gene Diversity in the Crustacean Calanus finmarchicus – Contributors to Cellular Detoxification , 2015, PloS one.

[14]  T. Ventura,et al.  Discovery of a novel insulin-like peptide and insulin binding proteins in the Eastern rock lobster Sagmariasus verreauxi. , 2015, General and comparative endocrinology.

[15]  T. Ventura,et al.  Identification and characterization of androgenic gland specific insulin-like peptide-encoding transcripts in two spiny lobster species: Sagmariasus verreauxi and Jasus edwardsii. , 2015, General and comparative endocrinology.

[16]  C. Sim,et al.  Identification of FOXO targets that generate diverse features of the diapause phenotype in the mosquito Culex pipiens , 2015, Proceedings of the National Academy of Sciences.

[17]  A. Christie,et al.  Neuropeptide discovery in the Araneae (Arthropoda, Chelicerata, Arachnida): elucidation of true spider peptidomes using that of the Western black widow as a reference. , 2015, General and comparative endocrinology.

[18]  A. Christie Neuropeptide discovery in Eucyclops serrulatus (Crustacea, Copepoda): in silico prediction of the first peptidome for a member of the Cyclopoida. , 2015, General and comparative endocrinology.

[19]  A. Tarrant,et al.  Transcriptional profiling of reproductive development, lipid storage and molting throughout the last juvenile stage of the marine copepod Calanus finmarchicus , 2014, Frontiers in Zoology.

[20]  A. Christie,et al.  Identification of the molecular components of a Tigriopus californicus (Crustacea, Copepoda) circadian clock. , 2014, Comparative biochemistry and physiology. Part D, Genomics & proteomics.

[21]  G. Beaugrand Marine Biodiversity, Climatic Variability and Global Change , 2014 .

[22]  Jim Thurmond,et al.  FlyBase: introduction of the Drosophila melanogaster Release 6 reference genome assembly and large-scale migration of genome annotations , 2014, Nucleic Acids Res..

[23]  A. Christie Identification of the first neuropeptides from the Amphipoda (Arthropoda, Crustacea). , 2014, General and comparative endocrinology.

[24]  A. Christie Expansion of the Litopenaeus vannamei and Penaeus monodon peptidomes using transcriptome shotgun assembly sequence data. , 2014, General and comparative endocrinology.

[25]  A. Christie Peptide discovery in the ectoparasitic crustacean Argulus siamensis: identification of the first neuropeptides from a member of the Branchiura. , 2014, General and comparative endocrinology.

[26]  A. Christie In silico characterization of the peptidome of the sea louse Caligus rogercresseyi (Crustacea, Copepoda). , 2014, General and comparative endocrinology.

[27]  A. Christie,et al.  Diffusible gas transmitter signaling in the copepod crustacean Calanus finmarchicus: identification of the biosynthetic enzymes of nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S) using a de novo assembled transcriptome. , 2014, General and comparative endocrinology.

[28]  Jun Wang,et al.  Molecular traces of alternative social organization in a termite genome , 2014, Nature Communications.

[29]  A. Christie Prediction of the first neuropeptides from a member of the Remipedia (Arthropoda, Crustacea). , 2014, General and comparative endocrinology.

[30]  A. Christie Prediction of the peptidomes of Tigriopus californicus and Lepeophtheirus salmonis (Copepoda, Crustacea). , 2014, General and comparative endocrinology.

[31]  T. Ventura,et al.  Analysis of the Central Nervous System Transcriptome of the Eastern Rock Lobster Sagmariasus verreauxi Reveals Its Putative Neuropeptidome , 2014, PloS one.

[32]  R. P. Hassett,et al.  De Novo Assembly of a Transcriptome for Calanus finmarchicus (Crustacea, Copepoda) – The Dominant Zooplankter of the North Atlantic Ocean , 2014, PloS one.

[33]  Sreekanth H. Chalasani,et al.  Divergent and convergent roles for insulin-like peptides in the worm, fly and mammalian nervous systems , 2014, Invertebrate Neuroscience.

[34]  A. Sehgal,et al.  Regulation of insect behavior via the insulin-signaling pathway , 2013, Front. Physiol..

[35]  D. K. Weaver,et al.  Odorant receptors of a primitive hymenopteran pest, the wheat stem sawfly , 2013, Insect molecular biology.

[36]  A. Christie,et al.  Prediction of the protein components of a putative Calanus finmarchicus (Crustacea, Copepoda) circadian signaling system using a de novo assembled transcriptome. , 2013, Comparative biochemistry and physiology. Part D, Genomics & proteomics.

[37]  M. Thorne,et al.  Transcriptome and Peptidome Characterisation of the Main Neuropeptides and Peptidic Hormones of a Euphausiid: The Ice Krill, Euphausia crystallorophias , 2013, PloS one.

[38]  Zhaoxia Cui,et al.  Transcriptome Analysis and Discovery of Genes Involved in Immune Pathways from Hepatopancreas of Microbial Challenged Mitten Crab Eriocheir sinensis , 2013, PloS one.

[39]  T. Doak,et al.  Peptidergic signaling in Calanus finmarchicus (Crustacea, Copepoda): in silico identification of putative peptide hormones and their receptors using a de novo assembled transcriptome. , 2013, General and comparative endocrinology.

[40]  C. Sim,et al.  Insulin signaling and the regulation of insect diapause , 2013, Front. Physiol..

[41]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[42]  Jin Sun,et al.  Transcriptomic Analysis of Neuropeptides and Peptide Hormones in the Barnacle Balanus amphitrite: Evidence of Roles in Larval Settlement , 2012, PloS one.

[43]  A. Christie,et al.  Genomic analyses of gas (nitric oxide and carbon monoxide) and small molecule transmitter (acetylcholine, glutamate and GABA) signaling systems in Daphnia pulex. , 2012, Comparative biochemistry and physiology. Part D, Genomics & proteomics.

[44]  Martin Edwards,et al.  Changing zooplankton seasonality in a changing ocean: Comparing time series of zooplankton phenology , 2012 .

[45]  A. Christie,et al.  Genomic analyses of aminergic signaling systems (dopamine, octopamine and serotonin) in Daphnia pulex. , 2012, Comparative biochemistry and physiology. Part D, Genomics & proteomics.

[46]  A. Brierley,et al.  Composition of wax esters is linked to diapause behavior of Calanus finmarchicus in a sea loch environment , 2012 .

[47]  S. Brunak,et al.  SignalP 4.0: discriminating signal peptides from transmembrane regions , 2011, Nature Methods.

[48]  J. Huybrechts,et al.  Genomics, transcriptomics, and peptidomics of Daphnia pulex neuropeptides and protein hormones. , 2011, Journal of proteome research.

[49]  Sarah M Harmon,et al.  Genomic identification of a putative circadian system in the cladoceran crustacean Daphnia pulex. , 2011, Comparative biochemistry and physiology. Part D, Genomics & proteomics.

[50]  A. Tarrant,et al.  Heat shock protein expression during stress and diapause in the marine copepod Calanus finmarchicus. , 2011, Journal of insect physiology.

[51]  Linda Partridge,et al.  Ageing in Drosophila: The role of the insulin/Igf and TOR signalling network , 2011, Experimental Gerontology.

[52]  Sarah M Harmon,et al.  Genomic analyses of the Daphnia pulex peptidome. , 2011, General and comparative endocrinology.

[53]  Todd H. Oakley,et al.  The Ecoresponsive Genome of Daphnia pulex , 2011, Science.

[54]  J. Link,et al.  Biodiversity and Ecosystem Function in the Gulf of Maine: Pattern and Role of Zooplankton and Pelagic Nekton , 2011, PloS one.

[55]  A. Christie,et al.  Bioinformatic analyses of the publicly accessible crustacean expressed sequence tags (ESTs) reveal numerous novel neuropeptide-encoding precursor proteins, including ones from members of several little studied taxa. , 2010, General and comparative endocrinology.

[56]  Lingjun Li,et al.  Combining in silico transcriptome mining and biological mass spectrometry for neuropeptide discovery in the Pacific white shrimp Litopenaeus vannamei , 2010, Peptides.

[57]  Mark D. Robinson,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[58]  Lingjun Li,et al.  Characterization of the Carcinus maenas neuropeptidome by mass spectrometry and functional genomics. , 2009, General and comparative endocrinology.

[59]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[60]  A. Christie,et al.  Identification of putative peptide paracrines/hormones in the water flea Daphnia pulex (Crustacea; Branchiopoda; Cladocera) using transcriptomics and immunohistochemistry. , 2009, General and comparative endocrinology.

[61]  A. Christie In silico analyses of peptide paracrines/hormones in Aphidoidea. , 2008, General and comparative endocrinology.

[62]  B. Williams,et al.  Mapping and quantifying mammalian transcriptomes by RNA-Seq , 2008, Nature Methods.

[63]  A. Christie Neuropeptide discovery in Ixodoidea: an in silico investigation using publicly accessible expressed sequence tags. , 2008, General and comparative endocrinology.

[64]  P. Pepin,et al.  Characteristics of Calanus finmarchicus dormancy patterns in the Northwest Atlantic , 2008 .

[65]  Lingjun Li,et al.  Identification of putative crustacean neuropeptides using in silico analyses of publicly accessible expressed sequence tags. , 2008, General and comparative endocrinology.

[66]  A. Tarrant,et al.  Differential gene expression in diapausing and active Calanus finmarchicus (Copepoda) , 2008 .

[67]  R. Harris,et al.  Histological changes of the digestive epithelium in Calanus finmarchicus: an index for diapause? , 2007 .

[68]  V. Chalifa-Caspi,et al.  Insulin and gender: an insulin-like gene expressed exclusively in the androgenic gland of the male crayfish. , 2007, General and comparative endocrinology.

[69]  L. Yebra,et al.  Assessment of Calanus finmarchicus growth and dormancy using the aminoacyl-tRNA synthetases method , 2006 .

[70]  E. Durbin,et al.  Estimating potential diapause duration in Calanus finmarchicus , 2006 .

[71]  William Gurney,et al.  Ocean-scale modelling of the distribution, abundance, and seasonal dynamics of the copepod Calanus finmarchicus , 2006 .

[72]  Deanne M. Taylor,et al.  Splice variants of the relaxin and INSL3 receptors reveal unanticipated molecular complexity. , 2005, Molecular human reproduction.

[73]  P. C. Reid,et al.  Plankton effect on cod recruitment in the North Sea , 2003, Nature.

[74]  D. Goberdhan,et al.  The functions of insulin signaling: size isn't everything, even in Drosophila. , 2003, Differentiation; research in biological diversity.

[75]  F. Carlotti,et al.  Energetic cost of gonad development in Calanus finmarchicus and C. helgolandicus , 2002 .

[76]  P. C. Reid,et al.  Reorganization of North Atlantic Marine Copepod Biodiversity and Climate , 2002, Science.

[77]  Amos Bairoch,et al.  The Sulfinator: predicting tyrosine sulfation sites in protein sequences , 2002, Bioinform..

[78]  Arnold De Loof,et al.  Insulin-related peptides and their conserved signal transduction pathway , 2002, Peptides.

[79]  S. Leevers Growth control: Invertebrate insulin surprises! , 2001, Current Biology.

[80]  Øyvind Fiksen,et al.  The adaptive timing of diapause – a search for evolutionarily robust strategies in Calanus finmarchicus , 2000 .

[81]  Stephen M. Mount,et al.  The genome sequence of Drosophila melanogaster. , 2000, Science.

[82]  J. Veenstra,et al.  Mono- and dibasic proteolytic cleavage sites in insect neuroendocrine peptide precursors. , 2000, Archives of insect biochemistry and physiology.

[83]  M. Heath,et al.  Seasonal changes in respiration rates of copepodite stage V Calanus finmarchicus (Gunnerus) , 1999 .

[84]  E. Hafen,et al.  Autonomous Control of Cell and Organ Size by CHICO, a Drosophila Homolog of Vertebrate IRS1–4 , 1999, Cell.

[85]  Charles B. Miller,et al.  Storage lipids of the copepod Calanus Jinmarchicus from Georges Bank and the Gulf of Maine , 1998 .

[86]  M. Wagner,et al.  RNA:DNA ratios as indicators of nutritional condition in the copepod Calanus finmarchicus , 1998 .

[87]  R. Campbell,et al.  Late fall-early winter recruitment of Calanus finmarchicus on Georges Bank , 1997 .

[88]  H. Hirche Diapause in the marine copepod, Calanus finmarchicus — A review , 1996 .

[89]  H. Dahms Dormancy in the Copepoda — an overview , 1995, Hydrobiologia.

[90]  Charles B. Miller,et al.  Phenology in Calanus funmarchicus; hypotheses about control mechanisms , 1991 .

[91]  J. Purcell,et al.  Predation and food limitation as causes of mortality in larval herring at a spawning ground in British Columbia , 1990 .

[92]  D. E. Gaskin,et al.  The distribution of right whales and Zooplankton in the Bay of Fundy, Canada , 1989 .

[93]  R. Conover Comparative life histories in the genera Calanus and Neocalanus in high latitudes of the northern hemisphere , 1988, Hydrobiologia.

[94]  K. Tande Ecological investigations on the zooplankton community of Balsfjorden, northern Norway: Generation cycles, and variations in body weight and body content of carbon and nitrogen related to overwintering and reproduction in the copepod Calanus finmarchicus (Gunnerus) , 1982 .

[95]  D. Slagstad,et al.  Ecological investigation on the zooplankton community of Balsfjorden, northern Norway , 1982 .

[96]  J. Sargent,et al.  On the Nutrition and Metabolism of Zooplankton XIV. Utilization of Lipid by Calanus Helgolandicus During Maturation and Reproduction , 1980, Journal of the Marine Biological Association of the United Kingdom.

[97]  A. Christie In silico characterization of the neuropeptidome of the Western black widow spider Latrodectus hesperus. , 2015, General and comparative endocrinology.

[98]  D. Denlinger,et al.  Mosquito diapause. , 2014, Annual review of entomology.

[99]  A. Christie,et al.  Identification and developmental expression of the enzymes responsible for dopamine, histamine, octopamine and serotonin biosynthesis in the copepod crustacean Calanus finmarchicus. , 2014, General and comparative endocrinology.

[100]  A. Christie,et al.  Identification of chelicerate neuropeptides using bioinformatics of publicly accessible expressed sequence tags. , 2011, General and comparative endocrinology.

[101]  Mark R. Brown,et al.  Signaling and function of insulin-like peptides in insects. , 2006, Annual review of entomology.

[102]  Herrera Kaia Portualdea HORIZONS Some ideas about the role of lipids in the life cycle of Calanus finmarchicus , 2004 .

[103]  H. Hirche Overwintering of Calanus finmarchicus and Calanus helgolandicus , 1983 .

[104]  R. Lough,et al.  Prey Field of Larval Herring Clupea harengus on a Continental Shelf Spawning Area , 1983 .

[105]  H. Hirche,et al.  Differentiation of mid-gut in adults and over-wintering copepodids of Calanus finmarchicus (Gunnerus) and C. helgolandicus Claus , 1980 .

[106]  Gapped BLAST and PSI-BLAST: A new , 1997 .