Low-resource Learning with Knowledge Graphs: A Comprehensive Survey

JIAOYAN CHEN, Department of Computer Science, University of Oxford, UK YUXIA GENG, College of Computer Science and Technology, Zhejiang University, China ZHUO CHEN, College of Computer Science and Technology, Zhejiang University, China JEFF Z. PAN, School of Informatics, The University of Edinburgh, UK YUAN HE, Department of Computer Science, University of Oxford, UK WEN ZHANG, School of Software Technology, Zhejiang University, China IAN HORROCKS, Department of Computer Science, University of Oxford, UK HUAJUN CHEN, College of Computer Science and Technology, Zhejiang University, China

[1]  Achim Rettinger,et al.  Learning Visual Models Using a Knowledge Graph as a Trainer , 2021, SEMWEB.

[2]  Oriol Vinyals,et al.  Multimodal Few-Shot Learning with Frozen Language Models , 2021, NeurIPS.

[3]  Michael Fink,et al.  Object Classification from a Single Example Utilizing Class Relevance Metrics , 2004, NIPS.

[4]  Timothy M. Hospedales,et al.  Meta-Learning in Neural Networks: A Survey , 2020, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Jun Zhao,et al.  Knowledge Guided Metric Learning for Few-Shot Text Classification , 2020, NAACL.

[6]  Hongan Wang,et al.  Knowledge-Enhanced Domain Adaptation in Few-Shot Relation Classification , 2021, KDD.

[7]  Fabian M. Suchanek,et al.  Machine Knowledge: Creation and Curation of Comprehensive Knowledge Bases , 2020, Found. Trends Databases.

[8]  Ruslan Salakhutdinov,et al.  Improving One-Shot Learning through Fusing Side Information , 2017, ArXiv.

[9]  Jesse Davis,et al.  TODTLER: Two-Order-Deep Transfer Learning , 2015, AAAI.

[10]  Yejin Choi,et al.  PIQA: Reasoning about Physical Commonsense in Natural Language , 2019, AAAI.

[11]  Christoph H. Lampert,et al.  Learning to detect unseen object classes by between-class attribute transfer , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[12]  Wenpeng Yin,et al.  Meta-learning for Few-shot Natural Language Processing: A Survey , 2020, ArXiv.

[13]  Zhe Zhao,et al.  K-BERT: Enabling Language Representation with Knowledge Graph , 2019, AAAI.

[14]  Zero-Shot Learning with Common Sense Knowledge Graphs , 2020, ArXiv.

[15]  Dan Roth,et al.  Benchmarking Zero-shot Text Classification: Datasets, Evaluation and Entailment Approach , 2019, EMNLP.

[16]  Erik Cambria,et al.  Label Embedding for Zero-shot Fine-grained Named Entity Typing , 2016, COLING.

[17]  Huajun Chen,et al.  Ontology-guided Semantic Composition for Zero-Shot Learning , 2020, KR.

[18]  Martha Palmer,et al.  Verb Semantics and Lexical Selection , 1994, ACL.

[19]  Geoffrey E. Hinton,et al.  Zero-shot Learning with Semantic Output Codes , 2009, NIPS.

[20]  Chitta Baral,et al.  Self-Supervised Knowledge Triplet Learning for Zero-shot Question Answering , 2020, EMNLP.

[21]  Raymond J. Mooney,et al.  Mapping and Revising Markov Logic Networks for Transfer Learning , 2007, AAAI.

[22]  Larry S. Davis,et al.  All About Knowledge Graphs for Actions , 2020, ArXiv.

[23]  Pedro M. Domingos,et al.  Deep transfer via second-order Markov logic , 2009, ICML '09.

[24]  Peter Clark,et al.  Can a Suit of Armor Conduct Electricity? A New Dataset for Open Book Question Answering , 2018, EMNLP.

[25]  Zili Zhou,et al.  Encoding Explanatory Knowledge for Zero-shot Science Question Answering , 2021, IWCS.

[26]  Yu-Chiang Frank Wang,et al.  Multi-label Zero-Shot Learning with Structured Knowledge Graphs , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[27]  Yonatan Bisk,et al.  Knowledge-driven Data Construction for Zero-shot Evaluation in Commonsense Question Answering , 2020, AAAI.

[28]  Xi Peng,et al.  A Generative Adversarial Approach for Zero-Shot Learning from Noisy Texts , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[29]  J. Leskovec,et al.  Inductive Learning on Commonsense Knowledge Graph Completion , 2020, 2021 International Joint Conference on Neural Networks (IJCNN).

[30]  Praveen Paritosh,et al.  Freebase: a collaboratively created graph database for structuring human knowledge , 2008, SIGMOD Conference.

[31]  Gerard de Melo,et al.  Explainable Link Prediction for Emerging Entities in Knowledge Graphs , 2020, SEMWEB.

[32]  Tejas Gokhale,et al.  WeaQA: Weak Supervision via Captions for Visual Question Answering , 2020, FINDINGS.

[33]  M. Berrendorf,et al.  Improving Inductive Link Prediction Using Hyper-Relational Facts , 2021, SEMWEB.

[34]  Marcus Rohrbach,et al.  KRISP: Integrating Implicit and Symbolic Knowledge for Open-Domain Knowledge-Based VQA , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[35]  Thomas Lukasiewicz,et al.  An ontology-based deep learning approach for triple classification with out-of-knowledge-base entities , 2021, Inf. Sci..

[36]  Li Fei-Fei,et al.  ImageNet: A large-scale hierarchical image database , 2009, CVPR.

[37]  Deniz Yuret,et al.  Transfer Learning for Low-Resource Neural Machine Translation , 2016, EMNLP.

[38]  Daniel Khashabi,et al.  Think you have Solved Direct-Answer Question Answering? Try ARC-DA, the Direct-Answer AI2 Reasoning Challenge , 2021, ArXiv.

[39]  Zewen Li,et al.  A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects , 2020, IEEE Transactions on Neural Networks and Learning Systems.

[40]  Liang Lin,et al.  Knowledge Graph Transfer Network for Few-Shot Recognition , 2019, AAAI.

[41]  Jeff Z. Pan,et al.  Inconsistencies, Negations and Changes in Ontologies , 2006, AAAI.

[42]  Sung Ju Hwang,et al.  Learning to Extrapolate Knowledge: Transductive Few-shot Out-of-Graph Link Prediction , 2020, NeurIPS.

[43]  Mitchell P. Marcus,et al.  OntoNotes : A Large Training Corpus for Enhanced Processing , 2017 .

[44]  Jiechao Guan,et al.  Transferrable Feature and Projection Learning with Class Hierarchy for Zero-Shot Learning , 2018, International Journal of Computer Vision.

[45]  Fan Yang,et al.  Differentiable Learning of Logical Rules for Knowledge Base Reasoning , 2017, NIPS.

[46]  Kristen Grauman,et al.  Relative attributes , 2011, 2011 International Conference on Computer Vision.

[47]  Relation Adversarial Network for Low Resource Knowledge Graph Completion , 2019, WWW.

[48]  Jason Weston,et al.  Translating Embeddings for Modeling Multi-relational Data , 2013, NIPS.

[49]  Catherine Havasi,et al.  ConceptNet 5.5: An Open Multilingual Graph of General Knowledge , 2016, AAAI.

[50]  Hiroaki Hayashi,et al.  Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing , 2021, ACM Comput. Surv..

[51]  Ali Farhadi,et al.  OK-VQA: A Visual Question Answering Benchmark Requiring External Knowledge , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[52]  Kaizhu Huang,et al.  Zero-Shot Text Classification via Knowledge Graph Embedding for Social Media Data , 2022, IEEE Internet of Things Journal.

[53]  Shaogang Gong,et al.  Semantic Autoencoder for Zero-Shot Learning , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[54]  Jens Lehmann,et al.  DBpedia: A Nucleus for a Web of Open Data , 2007, ISWC/ASWC.

[55]  Hoda Eldardiry,et al.  Prompt-based Zero-shot Relation Classification with Semantic Knowledge Augmentation , 2021, ArXiv.

[56]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[57]  Chengsheng Mao,et al.  KG-BERT: BERT for Knowledge Graph Completion , 2019, ArXiv.

[58]  I. Horrocks,et al.  BERTMap: A BERT-based Ontology Alignment System , 2021, AAAI.

[59]  Jeff Z. Pan,et al.  Resource Description Framework , 2020, Definitions.

[60]  Damion M. Dooley,et al.  FoodOn: a harmonized food ontology to increase global food traceability, quality control and data integration , 2018, npj Science of Food.

[61]  Yu Zhao,et al.  Zero-Shot Embedding for Unseen Entities in Knowledge Graph , 2017, IEICE Trans. Inf. Syst..

[62]  Honglak Lee,et al.  Learning Structured Output Representation using Deep Conditional Generative Models , 2015, NIPS.

[63]  Jeff Z. Pan,et al.  Exploiting Linked Data and Knowledge Graphs in Large Organisations , 2017 .

[64]  Peter A. Jansen,et al.  WorldTree V2: A Corpus of Science-Domain Structured Explanations and Inference Patterns supporting Multi-Hop Inference , 2020, LREC.

[65]  Yejin Choi,et al.  Social IQA: Commonsense Reasoning about Social Interactions , 2019, EMNLP 2019.

[66]  Wendy Hall,et al.  Graph-Based Visual-Semantic Entanglement Network for Zero-Shot Image Recognition , 2020, IEEE Transactions on Multimedia.

[67]  Egor V. Kostylev,et al.  INDIGO: GNN-Based Inductive Knowledge Graph Completion Using Pair-Wise Encoding , 2021, NeurIPS.

[68]  Heike Adel,et al.  A Survey on Recent Approaches for Natural Language Processing in Low-Resource Scenarios , 2020, NAACL.

[69]  Ming-Wei Chang,et al.  Zero-Shot Entity Linking by Reading Entity Descriptions , 2019, ACL.

[70]  Zhe Gan,et al.  An Empirical Study of GPT-3 for Few-Shot Knowledge-Based VQA , 2021, ArXiv.

[71]  Jon Gauthier,et al.  Are Distributional Representations Ready for the Real World? Evaluating Word Vectors for Grounded Perceptual Meaning , 2017, RoboNLP@ACL.

[72]  Raymond J. Mooney,et al.  Transfer Learning from Minimal Target Data by Mapping across Relational Domains , 2009, IJCAI.

[73]  Marc'Aurelio Ranzato,et al.  DeViSE: A Deep Visual-Semantic Embedding Model , 2013, NIPS.

[74]  Dan Klein,et al.  Adapting Language Models for Zero-shot Learning by Meta-tuning on Dataset and Prompt Collections , 2021, EMNLP.

[75]  Adrian Ulges,et al.  An Open-World Extension to Knowledge Graph Completion Models , 2019, AAAI.

[76]  Danqi Chen,et al.  Reasoning With Neural Tensor Networks for Knowledge Base Completion , 2013, NIPS.

[77]  Gerhard Weikum,et al.  WebChild: harvesting and organizing commonsense knowledge from the web , 2014, WSDM.

[78]  Xiang Zhang,et al.  Character-level Convolutional Networks for Text Classification , 2015, NIPS.

[79]  Maxat Kulmanov,et al.  EL Embeddings: Geometric construction of models for the Description Logic EL ++ , 2019, IJCAI.

[80]  Francisco Herrera,et al.  A tutorial on distance metric learning: Mathematical foundations, algorithms, experimental analysis, prospects and challenges , 2018, Neurocomputing.

[81]  Xinlei Chen,et al.  NEIL: Extracting Visual Knowledge from Web Data , 2013, 2013 IEEE International Conference on Computer Vision.

[82]  Heiko Paulheim,et al.  Knowledge graph refinement: A survey of approaches and evaluation methods , 2016, Semantic Web.

[83]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[84]  Zhiyuan Liu,et al.  KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language Representation , 2019, Transactions of the Association for Computational Linguistics.

[85]  Lifu Huang,et al.  Zero-Shot Transfer Learning for Event Extraction , 2017, ACL.

[86]  Henghui Zhu,et al.  Enhancing Clinical BERT Embedding using a Biomedical Knowledge Base , 2020, COLING.

[87]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[88]  Maosong Sun,et al.  ERNIE: Enhanced Language Representation with Informative Entities , 2019, ACL.

[89]  Matthijs Douze,et al.  FastText.zip: Compressing text classification models , 2016, ArXiv.

[90]  Wenhan Xiong,et al.  Meta Reasoning over Knowledge Graphs , 2019, ArXiv.

[91]  Ian Horrocks,et al.  Knowledge-aware Zero-Shot Learning: Survey and Perspective , 2021, IJCAI.

[92]  Hua Zheng,et al.  Inductively Representing Out-of-Knowledge-Graph Entities by Optimal Estimation Under Translational Assumptions , 2020, REPL4NLP.

[93]  Ian Horrocks,et al.  A proposal for an owl rules language , 2004, WWW '04.

[94]  Tao Shen,et al.  Structure-Augmented Text Representation Learning for Efficient Knowledge Graph Completion , 2020, WWW.

[95]  Koby Crammer,et al.  A theory of learning from different domains , 2010, Machine Learning.

[96]  Tat-Seng Chua,et al.  Zero-Shot Ingredient Recognition by Multi-Relational Graph Convolutional Network , 2020, AAAI.

[97]  George A. Miller,et al.  WordNet: A Lexical Database for English , 1995, HLT.

[98]  Huajun Chen,et al.  Explainable zero-shot learning via attentive graph convolutional network and knowledge graphs , 2021, Semantic Web.

[99]  Mark Chen,et al.  Language Models are Few-Shot Learners , 2020, NeurIPS.

[100]  Cordelia Schmid,et al.  Label-Embedding for Image Classification , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[101]  Gaurav Sharma,et al.  An Empirical Evaluation of Visual Question Answering for Novel Objects , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[102]  Bernardo Cuenca Grau,et al.  LogMap: Logic-Based and Scalable Ontology Matching , 2011, SEMWEB.

[103]  Zhiwu Lu,et al.  Large-Scale Few-Shot Learning: Knowledge Transfer With Class Hierarchy , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[104]  Rong Pan,et al.  Logic Attention Based Neighborhood Aggregation for Inductive Knowledge Graph Embedding , 2018, AAAI.

[105]  Xi Chen,et al.  Long-tail Relation Extraction via Knowledge Graph Embeddings and Graph Convolution Networks , 2019, NAACL.

[106]  Daisy Zhe Wang,et al.  DRUM: End-To-End Differentiable Rule Mining On Knowledge Graphs , 2019, NeurIPS.

[107]  Andrew Y. Ng,et al.  Zero-Shot Learning Through Cross-Modal Transfer , 2013, NIPS.

[108]  Gerhard Weikum,et al.  YAGO: A Multilingual Knowledge Base from Wikipedia, Wordnet, and Geonames , 2016, SEMWEB.

[109]  Amit P. Sheth,et al.  Semantic Services, Interoperability and Web Applications - Emerging Concepts , 2011, Semantic Services, Interoperability and Web Applications.

[110]  Bogdan Gabrys,et al.  Metalearning: a survey of trends and technologies , 2013, Artificial Intelligence Review.

[111]  Anton van den Hengel,et al.  Less is More: Zero-Shot Learning from Online Textual Documents with Noise Suppression , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[112]  Lise Getoor,et al.  A short introduction to probabilistic soft logic , 2012, NIPS 2012.

[113]  Qunzhi Zhou,et al.  KG-ZESHEL: Knowledge Graph-Enhanced Zero-Shot Entity Linking , 2021, K-CAP.

[114]  Jiaoyan Chen,et al.  An assertion and alignment correction framework for large scale knowledge bases , 2021, Semantic Web.

[115]  Bharath Hariharan,et al.  Low-Shot Visual Recognition by Shrinking and Hallucinating Features , 2016, 2017 IEEE International Conference on Computer Vision (ICCV).

[116]  Wendy Hall,et al.  What Can Knowledge Bring to Machine Learning?—A Survey of Low-shot Learning for Structured Data , 2021, ACM Trans. Intell. Syst. Technol..

[117]  Hiroaki Sato,et al.  The FrameNet Data and Software , 2003, ACL.

[118]  Michael Gamon,et al.  Representing Text for Joint Embedding of Text and Knowledge Bases , 2015, EMNLP.

[119]  Philip S. Yu,et al.  Multi-label Zero-shot Classification by Learning to Transfer from External Knowledge , 2020, BMVC.

[120]  Pietro Perona,et al.  One-shot learning of object categories , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[121]  Dan Roth,et al.  “Going on a vacation” takes longer than “Going for a walk”: A Study of Temporal Commonsense Understanding , 2019, EMNLP.

[122]  Yejin Choi,et al.  ATOMIC: An Atlas of Machine Commonsense for If-Then Reasoning , 2019, AAAI.

[123]  Sameer Singh,et al.  Injecting Logical Background Knowledge into Embeddings for Relation Extraction , 2015, NAACL.

[124]  Wei-Lun Chao,et al.  Synthesized Classifiers for Zero-Shot Learning , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[125]  Wenhan Xiong,et al.  DeepPath: A Reinforcement Learning Method for Knowledge Graph Reasoning , 2017, EMNLP.

[126]  Jianfeng Gao,et al.  Embedding Entities and Relations for Learning and Inference in Knowledge Bases , 2014, ICLR.

[127]  Fabian M. Suchanek,et al.  AMIE: association rule mining under incomplete evidence in ontological knowledge bases , 2013, WWW.

[128]  Xiaoyong Du,et al.  Zero-shot Image Tagging by Hierarchical Semantic Embedding , 2015, SIGIR.

[129]  Jeffrey Dean,et al.  Distributed Representations of Words and Phrases and their Compositionality , 2013, NIPS.

[130]  Anton van den Hengel,et al.  Zero-Shot Visual Question Answering , 2016, ArXiv.

[131]  Nitesh V. Chawla,et al.  Few-Shot Knowledge Graph Completion , 2019, AAAI.

[132]  Wei Zhang,et al.  Iteratively Learning Embeddings and Rules for Knowledge Graph Reasoning , 2019, WWW.

[133]  Jian-Yun Nie,et al.  RotatE: Knowledge Graph Embedding by Relational Rotation in Complex Space , 2018, ICLR.

[134]  Jing Yang,et al.  Knowledge-Based Fine-Grained Classification For Few-Shot Learning , 2020, 2020 IEEE International Conference on Multimedia and Expo (ICME).

[135]  Hao Wang,et al.  Rethinking Knowledge Graph Propagation for Zero-Shot Learning , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[136]  Qiang Chen,et al.  Meta Relational Learning for Few-Shot Link Prediction in Knowledge Graphs , 2019, EMNLP-IJCNLP 2019.

[137]  Bernt Schiele,et al.  Learning Deep Representations of Fine-Grained Visual Descriptions , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[138]  Xipeng Qiu,et al.  Paradigm Shift in Natural Language Processing , 2021, ArXiv.

[139]  Iryna Gurevych,et al.  Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks , 2019, EMNLP.

[140]  Matthew Richardson,et al.  Markov logic networks , 2006, Machine Learning.

[141]  Seyed Mehran Kazemi,et al.  Out-of-Sample Representation Learning for Knowledge Graphs , 2020, FINDINGS.

[142]  Pasquale Minervini,et al.  Convolutional 2D Knowledge Graph Embeddings , 2017, AAAI.

[143]  Zhiyuan Liu,et al.  Representation Learning of Knowledge Graphs with Entity Descriptions , 2016, AAAI.

[144]  Uli Sattler,et al.  Ontology-based n-ball Concept Embeddings Informing Few-shot Image Classification , 2021, MLSMKG@PKDD/ECML.

[145]  Paul T. Groth,et al.  Inductive Entity Representations from Text via Link Prediction , 2020, WWW.

[146]  Ling Shao,et al.  Discriminative Region-based Multi-Label Zero-Shot Learning , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[147]  Christoph H. Lampert,et al.  Attribute-Based Classification for Zero-Shot Visual Object Categorization , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[148]  Jiaoyan Chen,et al.  Zero-shot Visual Question Answering using Knowledge Graph , 2021, SEMWEB.

[149]  Jinhui Tang,et al.  Few-Shot Image Recognition With Knowledge Transfer , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[150]  Jingjing Li,et al.  Residual Graph Convolutional Networks for Zero-Shot Learning , 2019, MMAsia.

[151]  Tim Berners-Lee,et al.  Linked Data - The Story So Far , 2009, Int. J. Semantic Web Inf. Syst..

[152]  Piji Li,et al.  Tackling Long-Tailed Relations and Uncommon Entities in Knowledge Graph Completion , 2019, EMNLP.

[153]  Ronald Cornet,et al.  SNOMED CT’s Ontological Commitment , 2009 .

[154]  Qiang Yang,et al.  A Survey on Transfer Learning , 2010, IEEE Transactions on Knowledge and Data Engineering.

[155]  Jian Tang,et al.  Few-shot Relation Extraction via Bayesian Meta-learning on Relation Graphs , 2020, ICML.

[156]  Kai Zheng,et al.  Open-world knowledge graph completion with multiple interaction attention , 2020, World Wide Web.

[157]  Xifeng Yan,et al.  Inductive Relation Prediction by BERT , 2021, AAAI.

[158]  Doug Downey,et al.  Abductive Commonsense Reasoning , 2019, ICLR.

[159]  Anton van den Hengel,et al.  Visual Question Answering as a Meta Learning Task , 2017, ECCV.

[160]  Jaewoo Kang,et al.  Graph Transformer Networks , 2019, NeurIPS.

[161]  Jiajun Chen,et al.  Topology-Aware Correlations Between Relations for Inductive Link Prediction in Knowledge Graphs , 2021, AAAI.

[162]  Masatoshi Yoshikawa,et al.  Identifying Entity Properties from Text with Zero-shot Learning , 2019, SIGIR.

[163]  D. Tao,et al.  Incremental Zero-Shot Learning , 2021, IEEE Transactions on Cybernetics.

[164]  Jiaoyan Chen,et al.  Benchmarking Knowledge-driven Zero-shot Learning , 2021 .

[165]  Ramakanth Kavuluru,et al.  Few-Shot and Zero-Shot Multi-Label Learning for Structured Label Spaces , 2018, EMNLP.

[166]  Huajun Chen,et al.  Logic-guided Semantic Representation Learning for Zero-Shot Relation Classification , 2020, COLING.

[167]  Michael S. Bernstein,et al.  Visual Genome: Connecting Language and Vision Using Crowdsourced Dense Image Annotations , 2016, International Journal of Computer Vision.

[168]  Bin Liu,et al.  Combining ontology and reinforcement learning for zero-shot classification , 2017, Knowl. Based Syst..

[169]  Ian Horrocks,et al.  An Introduction to Description Logic , 2017 .

[170]  Zero-Shot Learning via Contrastive Learning on Dual Knowledge Graphs , 2021, 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW).

[171]  Qi Wu,et al.  FVQA: Fact-Based Visual Question Answering , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[172]  Tat-Seng Chua,et al.  NUS-WIDE: a real-world web image database from National University of Singapore , 2009, CIVR '09.

[173]  Yu Wu,et al.  Exploit the Unknown Gradually: One-Shot Video-Based Person Re-identification by Stepwise Learning , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[174]  Tim Weninger,et al.  Open-World Knowledge Graph Completion , 2017, AAAI.

[175]  Rada Mihalcea,et al.  Improving Zero-Shot Learning Baselines with Commonsense Knowledge , 2020, Cognitive Computation.

[176]  Bohyung Han,et al.  Context-Aware Zero-Shot Recognition , 2019, AAAI.

[177]  Xin Lv,et al.  Adapting Meta Knowledge Graph Information for Multi-Hop Reasoning over Few-Shot Relations , 2019, EMNLP.

[178]  Sibo Wang,et al.  Inductive Link Prediction for Nodes Having Only Attribute Information , 2020, IJCAI.

[179]  Huajun Chen,et al.  Zero-shot Text Classification via Reinforced Self-training , 2020, ACL.

[180]  Oriol Vinyals,et al.  Matching Networks for One Shot Learning , 2016, NIPS.

[181]  Samy Bengio,et al.  Zero-Shot Learning by Convex Combination of Semantic Embeddings , 2013, ICLR.

[182]  Soujanya Poria,et al.  DOZEN: Cross-Domain Zero Shot Named Entity Recognition with Knowledge Graph , 2021, SIGIR.

[183]  Yike Guo,et al.  Integrating Semantic Knowledge to Tackle Zero-shot Text Classification , 2019, NAACL.

[184]  William L. Hamilton,et al.  Inductive Relation Prediction by Subgraph Reasoning , 2019, ICML.

[185]  Jonathan Berant,et al.  CommonsenseQA: A Question Answering Challenge Targeting Commonsense Knowledge , 2019, NAACL.

[186]  Zhihui Li,et al.  Scene Graphs: A Survey of Generations and Applications , 2021, ArXiv.

[187]  Chenrui Zhang,et al.  TGG: Transferable Graph Generation for Zero-shot and Few-shot Learning , 2019, ACM Multimedia.

[188]  Ali Farhadi,et al.  Describing objects by their attributes , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[189]  Pascal Hitzler,et al.  OWL and Rules , 2011, Reasoning Web.

[190]  Sergey Levine,et al.  Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks , 2017, ICML.

[191]  James T. Kwok,et al.  Generalizing from a Few Examples , 2019, ACM Comput. Surv..

[192]  Ashish Sabharwal,et al.  QASC: A Dataset for Question Answering via Sentence Composition , 2019, AAAI.

[193]  Shuqiang Jiang,et al.  Attribute-Guided Feature Learning for Few-Shot Image Recognition , 2021, IEEE Transactions on Multimedia.

[194]  Cordelia Schmid,et al.  Label-Embedding for Attribute-Based Classification , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[195]  Bernt Schiele,et al.  Feature Generating Networks for Zero-Shot Learning , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[196]  Ian Horrocks,et al.  f-SWRL: A Fuzzy Extension of SWRL , 2005, J. Data Semant..

[197]  Max Welling,et al.  Modeling Relational Data with Graph Convolutional Networks , 2017, ESWC.

[198]  Ian Horrocks,et al.  Augmenting Ontology Alignment by Semantic Embedding and Distant Supervision , 2021, ESWC.

[199]  Xinlei Chen,et al.  Never-Ending Learning , 2012, ECAI.

[200]  Ming Zhao,et al.  Attention-Based Aggregation Graph Networks for Knowledge Graph Information Transfer , 2020, PAKDD.

[201]  Alexa T. McCray,et al.  An Upper-Level Ontology for the Biomedical Domain , 2003, Comparative and functional genomics.

[202]  Jorge Nocedal,et al.  Optimization Methods for Large-Scale Machine Learning , 2016, SIAM Rev..

[203]  Andreas Abecker,et al.  Ontologies and the Semantic Web , 2011, Handbook of Semantic Web Technologies.

[204]  Shaogang Gong,et al.  Recent Advances in Zero-Shot Recognition: Toward Data-Efficient Understanding of Visual Content , 2018, IEEE Signal Processing Magazine.

[205]  Yuji Matsumoto,et al.  Knowledge Transfer for Out-of-Knowledge-Base Entities: A Graph Neural Network Approach , 2017, ArXiv.

[206]  Daniel Jurafsky,et al.  Distant supervision for relation extraction without labeled data , 2009, ACL.

[207]  John Blitzer,et al.  Biographies, Bollywood, Boom-boxes and Blenders: Domain Adaptation for Sentiment Classification , 2007, ACL.

[208]  Markus Krötzsch,et al.  Wikidata , 2014, Commun. ACM.

[209]  Chunyan Miao,et al.  A Survey of Zero-Shot Learning , 2019, ACM Trans. Intell. Syst. Technol..

[210]  Nitesh Chawla,et al.  Few-Shot Multi-Hop Relation Reasoning over Knowledge Bases , 2020, FINDINGS.

[211]  Ming-Wei Chang,et al.  BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding , 2019, NAACL.

[212]  Jugal K. Kalita,et al.  A Survey of the Usages of Deep Learning for Natural Language Processing , 2018, IEEE Transactions on Neural Networks and Learning Systems.

[213]  Ian Horrocks,et al.  ColNet: Embedding the Semantics of Web Tables for Column Type Prediction , 2018, AAAI.

[214]  Daisy Zhe Wang,et al.  Ten Years of WebTables , 2018, Proc. VLDB Endow..

[215]  Andrew McCallum,et al.  Modeling Relations and Their Mentions without Labeled Text , 2010, ECML/PKDD.

[216]  James A. Hendler,et al.  Handbook of Semantic Web Technologies , 2011, Handbook of Semantic Web Technologies.

[217]  Zhiyuan Liu,et al.  Graph Neural Networks: A Review of Methods and Applications , 2018, AI Open.

[218]  Huajun Chen,et al.  OntoZSL: Ontology-enhanced Zero-shot Learning , 2021, WWW.

[219]  Babak Saleh,et al.  Write a Classifier: Zero-Shot Learning Using Purely Textual Descriptions , 2013, 2013 IEEE International Conference on Computer Vision.

[220]  Yejin Choi,et al.  COMET: Commonsense Transformers for Automatic Knowledge Graph Construction , 2019, ACL.

[221]  Chunyun Zhang,et al.  Generative Adversarial Zero-Shot Relational Learning for Knowledge Graphs , 2020, AAAI.

[222]  Huajun Chen,et al.  Knowledge-based Transfer Learning Explanation , 2018, KR.

[223]  Philip S. Yu,et al.  Generative Dual Adversarial Network for Generalized Zero-Shot Learning , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[224]  Jens Lehmann,et al.  Message Passing for Hyper-Relational Knowledge Graphs , 2020, EMNLP.

[225]  Yejin Choi,et al.  Dynamic Knowledge Graph Construction for Zero-shot Commonsense Question Answering , 2019, ArXiv.

[226]  Mo Yu,et al.  One-Shot Relational Learning for Knowledge Graphs , 2018, EMNLP.

[227]  Quoc V. Le,et al.  Finetuned Language Models Are Zero-Shot Learners , 2021, ICLR.

[228]  Abhinav Gupta,et al.  Zero-Shot Recognition via Semantic Embeddings and Knowledge Graphs , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[229]  Christoph H. Lampert,et al.  Zero-Shot Learning—A Comprehensive Evaluation of the Good, the Bad and the Ugly , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.