Numerical solution of fluid-structure interaction problems by means of a high order Discontinuous Galerkin method on polygonal grids

Abstract We consider the two-dimensional numerical approximation of the fluid-structure interaction problem over unfitted fluid and structure meshes. In particular, we consider a method where the fluid mesh (on the background) is fixed, apart from the interface with the moving immersed structure, where general polygonal elements of arbitrary shape and changing in time are generated. The new idea of this work is to handle the discretization on such polygons by using the Discontinuous Galerkin method on polyhedral grids (PolyDG), which has been recently developed for different differential equations and here adapted for the first time to a heterogeneous problem. We prove a stability result of the proposed semi-discrete formulation and discuss how to deal with the partial or total covering of a fluid mesh element due to the structure movement. We finally present some numerical results with the aim of showing the effectiveness of the proposed method.

[1]  Xiaozhe Hu,et al.  Multigrid algorithms for $hp$-version Interior Penalty Discontinuous Galerkin methods on polygonal and polyhedral meshes , 2014 .

[2]  Eli J Weinberg,et al.  Transient, Three-dimensional, Multiscale Simulations of the Human Aortic Valve , 2007, Cardiovascular engineering.

[3]  Wolfgang A. Wall,et al.  Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods , 2013 .

[4]  Erik Burman,et al.  Stabilized explicit coupling for fluid-structure interaction using Nitsche s method , 2007 .

[5]  Miguel A. Fernández,et al.  An unfitted Nitsche method for incompressible fluid–structure interaction using overlapping meshes , 2014 .

[6]  N. Sukumar,et al.  Conforming polygonal finite elements , 2004 .

[7]  P. Houston,et al.  hp-Version Discontinuous Galerkin Methods on Polygonal and Polyhedral Meshes , 2017 .

[8]  E. Ramm,et al.  Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows , 2007 .

[9]  C. Peskin Flow patterns around heart valves: A numerical method , 1972 .

[10]  Miguel A. Fernández,et al.  Nitsche-XFEM for the coupling of an incompressible fluid with immersed thin-walled structures , 2016 .

[11]  Stéphane Bordas,et al.  Numerical integration over arbitrary polygonal domains based on Schwarz–Christoffel conformal mapping , 2009 .

[12]  L. Beirao da Veiga,et al.  Mixed Virtual Element Methods for general second order elliptic problems on polygonal meshes , 2014 .

[13]  Mrinal K. Sen,et al.  Grid dispersion and stability criteria of some common finite-element methods for acoustic and elastic wave equations , 2007 .

[14]  P. Tesini,et al.  On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations , 2012, J. Comput. Phys..

[15]  Paola F. Antonietti,et al.  A high-order discontinuous Galerkin approach to the elasto-acoustic problem , 2018, Computer Methods in Applied Mechanics and Engineering.

[16]  Giuseppe Rega,et al.  Nonlinear vibrations of suspended cables—Part I: Modeling and analysis , 2004 .

[17]  J. Halleux,et al.  An arbitrary lagrangian-eulerian finite element method for transient dynamic fluid-structure interactions , 1982 .

[18]  Stefano Giani,et al.  Review of Discontinuous Galerkin Finite Element Methods for Partial Differential Equations on Complicated Domains , 2016, IEEE CSE 2016.

[19]  Emmanuil H. Georgoulis,et al.  hp-Version Space-Time Discontinuous Galerkin Methods for Parabolic Problems on Prismatic Meshes , 2016, SIAM J. Sci. Comput..

[20]  Mats G. Larson,et al.  A Nitsche-Based Cut Finite Element Method for a Fluid--Structure Interaction Problem , 2013, 1311.2431.

[21]  Emmanuil H. Georgoulis,et al.  Adaptive discontinuous Galerkin methods for elliptic interface problems , 2017, Math. Comput..

[22]  Thomas-Peter Fries,et al.  Higher‐order XFEM for curved strong and weak discontinuities , 2009 .

[23]  Mrinal K. Sen,et al.  The interior penalty discontinuous Galerkin method for elastic wave propagation: grid dispersion , 2008 .

[24]  S. Takeuchi,et al.  Full Eulerian simulations of biconcave neo-Hookean particles in a Poiseuille flow , 2010 .

[25]  W. Hackbusch,et al.  Composite finite elements for problems containing small geometric details , 1997 .

[26]  Benedikt Schott,et al.  Monolithic cut finite element–based approaches for fluid‐structure interaction , 2018, International Journal for Numerical Methods in Engineering.

[27]  Hee-Sun Kim,et al.  Fully coupled fluid–structure interaction model of congenital bicuspid aortic valves: effect of asymmetry on hemodynamics , 2013, Medical & Biological Engineering & Computing.

[28]  Fabio Nobile,et al.  Time accurate partitioned algorithms for the solution of fluid–structure interaction problems in haemodynamics , 2013 .

[29]  L. Heltai,et al.  A finite element approach to the immersed boundary method , 2003 .

[30]  Wing Kam Liu,et al.  Finite Element Analysis of Incompressible Viscous Flows by the Penalty Function Formulation , 1979 .

[31]  Blanca Ayuso de Dios,et al.  Stability Analysis of Discontinuous Galerkin Approximations to the Elastodynamics Problem , 2013, J. Sci. Comput..

[32]  Per-Olof Persson,et al.  On the convergence of iterative solvers for polygonal discontinuous Galerkin discretizations , 2018, 1801.04313.

[33]  M. Heil An efficient solver for the fully-coupled solution of large-displacement fluid-structure interaction problems , 2004 .

[34]  Armando Miguel Awruch,et al.  Finite element simulation of the wind action over bridge sectional models: Application to the Guamá River Bridge (Pará State, Brazil) , 2008 .

[35]  Alfio Quarteroni,et al.  The cardiovascular system: Mathematical modelling, numerical algorithms and clinical applications * , 2017, Acta Numerica.

[36]  Annalisa Quaini,et al.  Splitting Methods Based on Algebraic Factorization for Fluid-Structure Interaction , 2008, SIAM J. Sci. Comput..

[37]  W. Hackbusch,et al.  Composite finite elements for the approximation of PDEs on domains with complicated micro-structures , 1997 .

[38]  P. Hansbo,et al.  An unfitted finite element method, based on Nitsche's method, for elliptic interface problems , 2002 .

[39]  L. D. Marini,et al.  Locking-free Reissner-Mindlin elements without reduced integration , 2007 .

[40]  Miguel Angel Fernández,et al.  A Newton method using exact jacobians for solving fluid-structure coupling , 2005 .

[41]  R. Alaggio,et al.  Non-linear oscillations of a four-degree-of-freedom model of a suspended cable under multiple internal resonance conditions , 1995 .

[42]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[43]  C. Vergara,et al.  Extended Finite Elements Method for Fluid-Structure Interaction with an Immersed Thick Non-linear Structure , 2018 .

[44]  Emiliano Votta,et al.  Impact of modeling fluid-structure interaction in the computational analysis of aortic root biomechanics. , 2013, Medical engineering & physics.

[45]  Jack Lemmon,et al.  A numerical simulation of mechanical heart valve closure fluid dynamics. , 2002, Journal of biomechanics.

[46]  Seizo Tanaka,et al.  Discontinuous Galerkin Methods with Nodal and Hybrid Modal/Nodal Triangular, Quadrilateral, and Polygonal Elements for Nonlinear Shallow Water Flow , 2014 .

[47]  R. Glowinski,et al.  A distributed Lagrange multiplier/fictitious domain method for particulate flows , 1999 .

[48]  W. Wall,et al.  Truly monolithic algebraic multigrid for fluid–structure interaction , 2011 .

[49]  Fabio Nobile,et al.  Inexact accurate partitioned algorithms for fluid-structure interaction problems with finite elasticity in haemodynamics , 2014, J. Comput. Phys..

[50]  Gianluca Iaccarino,et al.  IMMERSED BOUNDARY METHODS , 2005 .

[51]  Wolfgang A. Wall,et al.  3D fluid–structure-contact interaction based on a combined XFEM FSI and dual mortar contact approach , 2010 .

[52]  M. Shashkov,et al.  The Numerical Solution of Diffusion Problems in Strongly Heterogeneous Non-isotropic Materials , 1997 .

[53]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[54]  Paola F. Antonietti,et al.  Bubble stabilization of Discontinuous Galerkin methods , 2009 .

[55]  Analysis of the finite element variable penalty method for Stokes equations , 1985 .

[56]  Miguel A. Fernández,et al.  A projection semi‐implicit scheme for the coupling of an elastic structure with an incompressible fluid , 2007 .

[57]  Fabio Nobile,et al.  Fluid-structure partitioned procedures based on Robin transmission conditions , 2008, J. Comput. Phys..

[58]  Giulio Ventura,et al.  Equivalent polynomials for quadrature in Heaviside function enriched elements , 2015 .

[59]  Alexandre Ern,et al.  An Arbitrary-Order and Compact-Stencil Discretization of Diffusion on General Meshes Based on Local Reconstruction Operators , 2014, Comput. Methods Appl. Math..

[60]  Fabio Nobile,et al.  Added-mass effect in the design of partitioned algorithms for fluid-structure problems , 2005 .

[61]  F P T Baaijens,et al.  A computational fluid-structure interaction analysis of a fiber-reinforced stentless aortic valve. , 2003, Journal of biomechanics.

[62]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[63]  Christian Vergara,et al.  An Unfitted Formulation for the Interaction of an Incompressible Fluid with a Thick Structure via an XFEM/DG Approach , 2018, SIAM J. Sci. Comput..

[64]  Liang Liu,et al.  Analysis of wind-induced vibration of fluid–structure interaction system for isolated aqueduct bridge , 2013 .

[65]  Paul Houston,et al.  Fast Numerical Integration on Polytopic Meshes with Applications to Discontinuous Galerkin Finite Element Methods , 2018, J. Sci. Comput..

[66]  F. Brezzi,et al.  Basic principles of Virtual Element Methods , 2013 .

[67]  A. Ern,et al.  A Hybrid High-Order method for the incompressible Navier-Stokes equations based on Temam's device , 2018, J. Comput. Phys..

[68]  Ivan Yotov,et al.  Discontinuous Galerkin and mimetic finite difference methods for coupled Stokes–Darcy flows on polygonal and polyhedral grids , 2013, Numerische Mathematik.

[69]  N. Sukumar,et al.  Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons , 2011 .

[70]  Boyce E. Griffith,et al.  Simulating the fluid dynamics of natural and prosthetic heart valves using the immersed boundary method , 2009 .

[71]  Graham F. Carey,et al.  Penalty approximation of stokes flow , 1982 .

[72]  Erik Burman,et al.  Stabilization of explicit coupling in fluid-structure interaction involving fluid incompressibility , 2009 .

[73]  John S. Shrimpton,et al.  On the application of immersed boundary, fictitious domain and body-conformal mesh methods to many particle multiphase flows , 2012 .

[74]  T. R. Hughes,et al.  Mathematical foundations of elasticity , 1982 .

[75]  Paola F. Antonietti,et al.  High-order Discontinuous Galerkin methods for the elastodynamics equation on polygonal and polyhedral meshes , 2018, Computer Methods in Applied Mechanics and Engineering.

[76]  Paola F. Antonietti,et al.  V-cycle Multigrid Algorithms for Discontinuous Galerkin Methods on Non-nested Polytopic Meshes , 2017, Journal of Scientific Computing.

[77]  F. Brezzi,et al.  A FAMILY OF MIMETIC FINITE DIFFERENCE METHODS ON POLYGONAL AND POLYHEDRAL MESHES , 2005 .

[78]  Stefano Giani,et al.  hp-Version Composite Discontinuous Galerkin Methods for Elliptic Problems on Complicated Domains , 2013, SIAM J. Sci. Comput..

[79]  ANDRÉ MASSING,et al.  Efficient Implementation of Finite Element Methods on Nonmatching and Overlapping Meshes in Three Dimensions , 2013, SIAM J. Sci. Comput..

[80]  L. Heltai,et al.  On the hyper-elastic formulation of the immersed boundary method , 2008 .

[81]  Robert Eymard,et al.  Gradient schemes: Generic tools for the numerical analysis of diffusion equations , 2015 .