东昆仑造山带波洛斯太地区晚三叠世中酸性火山岩锆石U-Pb年代学、地球化学及地质意义

[1]  啸坤 黄,et al.  东昆仑巴隆地区晚三叠世石英闪长岩成因:U-Pb年代学、地球化学及Sr-Nd-Hf同位素制约 , 2021, Earth Science-Journal of China University of Geosciences.

[2]  Yunpeng Dong,et al.  Central China Orogenic Belt and amalgamation of East Asian continents , 2021 .

[3]  Ruibao Li,et al.  Late Silurian to Early Devonian volcanics in the East Kunlun orogen, northern Tibetan Plateau: Record of postcollisional magmatism related to the evolution of the Proto-Tethys Ocean , 2020 .

[4]  F. Sun,et al.  Middle to Late Triassic granitic magmatism in the East Kunlun Orogenic Belt, NW China: Petrogenesis and implications for a transition from subduction to post‐collision setting of the Palaeo‐Tethys Ocean , 2020, Geological Journal.

[5]  M. Santosh,et al.  Petrogenesis of Late Triassic mafic enclaves and host granodiorite in the Eastern Kunlun Orogenic Belt, China: Implications for the reworking of juvenile crust by delamination-induced asthenosphere upwelling , 2020 .

[6]  Fengli Shao,et al.  Petrogenesis of the Triassic granitoids from the East Kunlun Orogenic Belt, NW China: Implications for continental crust growth from syn-collisional to post-collisional setting , 2020 .

[7]  俞军真,et al.  东昆仑东段将军墓含矿岩体锆石U-Pb年代学、地球化学特征及其地质意义 , 2020 .

[8]  Jeffrey M. Dick,et al.  The tectonic evolution of the East Kunlun Orogen, northern Tibetan Plateau: A critical review with an integrated geodynamic model , 2020 .

[9]  岩 赵,et al.  辽东岫岩地区两类古元古代花岗岩年代学、地球化学及地质意义 , 2020, Earth Science-Journal of China University of Geosciences.

[10]  珂 王,et al.  东昆仑加鲁河中三叠世含石榴石二云母花岗岩的成因及地质意义 , 2020, Earth Science-Journal of China University of Geosciences.

[11]  Yan Liu,et al.  Late Permian back-arc extension of the eastern Paleo-Tethys Ocean: Evidence from the East Kunlun Orogen, Northern Tibetan Plateau , 2019, Lithos.

[12]  F. Gao,et al.  Early Indosinian high-Mg# and high-Sr/Y ratio granodiorites in the Xiahe area, West Qinling, Central China: Petrogenesis and geodynamic implications , 2019, Lithos.

[13]  Fei Liu,et al.  Zircon U–Pb geochronology, Hf isotopes, and whole‐rock geochemistry of Hongshuihe Early to Middle Triassic quartz diorites and granites in the Eastern Kunlun Orogen, NW China: Implication for petrogenesis and geodynamics , 2019, Geological Journal.

[14]  San-zhong Li,et al.  Geological reconstructions of the East Asian blocks: From the breakup of Rodinia to the assembly of Pangea , 2018, Earth-Science Reviews.

[15]  Ruibao Li,et al.  The Early Triassic Andean-type Halagatu granitoids pluton in the East Kunlun orogen, northern Tibet Plateau: Response to the northward subduction of the Paleo-Tethys Ocean , 2018, Gondwana Research.

[16]  张磊,et al.  后碰撞阶段的“俯冲型”岩浆岩:来自东昆仑瑙木浑沟晚三叠世闪长玢岩的证据 , 2018 .

[17]  Yunpeng Dong,et al.  Subduction and accretionary tectonics of the East Kunlun orogen, western segment of the Central China Orogenic System , 2017, Earth-Science Reviews.

[18]  Guozhi Wang,et al.  Identification of A‐type granite in the southeastern Kunlun Orogen, Qinghai Province, China: implications for the tectonic framework of the Eastern Kunlun Orogen , 2017 .

[19]  Changqian Ma,et al.  Geochronology and petrogenesis of Triassic high-K calc-alkaline granodiorites in the East Kunlun orogen, West China: Juvenile lower crustal melting during post-collisional extension , 2016, Journal of Earth Science.

[20]  L. Ding,et al.  Pre-Cenozoic geologic history of the central and northern Tibetan Plateau and the role of Wilson cycles in constructing the Tethyan orogenic system , 2016 .

[21]  赵菲菲,et al.  青海阿尼玛卿蛇绿混杂岩带西段哥日卓托杂岩体年代学、地球化学及 Hf 同位素 , 2016 .

[22]  L. Ye,et al.  Petrogenesis and tectonic significance of the late Triassic mafic dikes and felsic volcanic rocks in the East Kunlun Orogenic Belt, Northern Tibet Plateau , 2016 .

[23]  Yunpeng Dong,et al.  Tectono-thermal events in East Kunlun, Northern Tibetan Plateau: Evidence from zircon U–Pb geochronology , 2016 .

[24]  G. Dong,et al.  Petrogenesis and geodynamic implications of the Mid-Triassic lavas from East Kunlun, northern Tibetan Plateau , 2015 .

[25]  E. Carranza,et al.  Crustal thickening prior to 220 Ma in the East Kunlun Orogenic Belt: Insights from the Late Triassic granitoids in the Xiao-Nuomuhong pluton , 2014 .

[26]  F. Sun,et al.  Zircon U-Pb geochronology, geochemical and Sr-Nd-Hf isotopic compositions of the Triassic granite and diorite dikes from the Wulonggou mining area in the Eastern Kunlun Orogen, NW China: Petrogenesis and tectonic implications , 2014 .

[27]  B. Liu,et al.  Reworking of old continental lithosphere: an important crustal evolution mechanism in orogenic belts, as evidenced by Triassic I-type granitoids in the East Kunlun orogen, Northern Tibetan Plateau , 2014, Journal of the Geological Society.

[28]  G. Nowell,et al.  Geochemical constraints on the petrogenesis of granitoids in the East Kunlun Orogenic belt, northern Tibetan Plateau: Implications for continental crust growth through syn-collisional felsic magmatism , 2014 .

[29]  张克信,et al.  祁连-柴达木-东昆仑新元古-中生代沉积盆地演化 , 2014 .

[30]  G. Pan,et al.  Tectonic evolution of the Qinghai-Tibet Plateau , 2012 .

[31]  B. Liu,et al.  Petrogenesis and tectonic significance of the Late Permian–Middle Triassic calc-alkaline granites in the Balong region, eastern Kunlun Orogen, China , 2012, Geological Magazine.

[32]  W. Dickinson Accretionary Mesozoic–Cenozoic expansion of the Cordilleran continental margin in California and adjacent Oregon , 2008 .

[33]  S. Jung,et al.  Source composition and melting temperatures of orogenic granitoids: constraints from CaO/Na2O, Al2O3/TiO2 and accessory mineral saturation thermometry , 2007 .

[34]  Hongtao Liu Petrology, geochemistry and geochronology of late Triassic volcanics, Kunlun orogenic belt, western China: Implications for tectonic setting and petrogenesis , 2005 .

[35]  F. Corfu,et al.  Atlas of Zircon Textures , 2003 .

[36]  W. Siebel,et al.  Geochronology of the Karadere basement (NW Turkey) and implications for the geological evolution of the Istanbul zone , 2002 .

[37]  An Yin,et al.  Geologic Evolution of the Himalayan-Tibetan Orogen , 2000 .

[38]  F. Albarède,et al.  Separation of Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector-multiple collector ICP-MS , 1997 .

[39]  J. Pearce Sources and settings of granitic rocks , 1996 .

[40]  J. Vervoort,et al.  Behavior of hafnium and neodymium isotopes in the crust: Constraints from Precambrian crustally derived granites , 1996 .

[41]  P. Robinson,et al.  Ophiolites of the Kunlun Mountains, China and their tectonic implications , 1996 .

[42]  E. Watson,et al.  Dehydration melting of metabasalt at 8-32 kbar : Implications for continental growth and crust-mantle recycling , 1995 .

[43]  P. Rickwood Boundary lines within petrologic diagrams which use oxides of major and minor elements , 1989 .

[44]  W. McDonough,et al.  Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes , 1989, Geological Society, London, Special Publications.

[45]  J. Winchester,et al.  Geochemical discrimination of different magma series and their differentiation products using immobile elements , 1977 .