A simple financial market model with chartists and fundamentalists: Market entry levels and discontinuities

We present a simple financial market model with interacting chartists and fundamentalists. Since some speculators only become active when a certain misalignment level has been crossed, the model dynamics is driven by a discontinuous piecewise linear map. Recent mathematical techniques allow a comprehensive study of the model's dynamical system. One of its surprising features is that model simulations may appear to be chaotic, although only regular dynamics can emerge. While our deterministic model is able to produce stylized bubbles and crashes we also show that a stochastic version of our model is able to match the finer details of financial market dynamics.

[1]  Tönu Puu,et al.  Oligopoly Dynamics : Models and Tools , 2002 .

[2]  C. Mira,et al.  Chaotic Dynamics: From the One-Dimensional Endomorphism to the Two-Dimensional Diffeomorphism , 1987 .

[3]  井上 達,et al.  Heterogeneity , 1997, Encyclopedia of GIS.

[4]  L. Gardini,et al.  Structurally unstable regular dynamics in 1D piecewise smooth maps, and circle maps , 2012 .

[5]  Cars H. Hommes,et al.  Cycles and chaos in a socialist economy , 1995 .

[6]  Laura Gardini,et al.  Speculative behaviour and complex asset price dynamics: a global analysis , 2002 .

[7]  C. Hommes The heterogeneous expectations hypothesis: some evidence from the lab , 2010 .

[8]  J. Yorke,et al.  Bifurcations in one-dimensional piecewise smooth maps-theory and applications in switching circuits , 2000 .

[9]  Volodymyr L. Maistrenko,et al.  On period-adding sequences of attracting cycles in piecewise linear maps , 1998 .

[10]  Leon O. Chua,et al.  BIFURCATIONS OF ATTRACTING CYCLES FROM TIME-DELAYED CHUA’S CIRCUIT , 1995 .

[11]  Richard H. Day,et al.  Ergodic fluctuations in deterministic economic models , 1987 .

[12]  James A. Yorke,et al.  BORDER-COLLISION BIFURCATIONS FOR PIECEWISE SMOOTH ONE-DIMENSIONAL MAPS , 1995 .

[13]  William A. Brock,et al.  A rational route to randomness , 1997 .

[14]  Damian Giaouris,et al.  Local bifurcations of a quasiperiodic Orbit , 2012, Int. J. Bifurc. Chaos.

[15]  L. Gardini,et al.  The dynamics of the NAIRU model with two switching regimes , 2010 .

[16]  Carl Chiarella,et al.  Heterogeneity, Market Mechanisms, and Asset Price Dynamics , 2008 .

[17]  Christopher J. Metcalf The dynamics of the Stiglitz policy in the RSS model , 2008 .

[18]  Richard H. Day,et al.  Complex economic dynamics , 1994 .

[19]  Andrea Gaunersdorfer,et al.  A Nonlinear Structural Model for Volatility Clustering , 2000 .

[20]  Irrational Exuberance Irrational exuberance? , 2006, Nature Biotechnology.

[21]  Cars H. Hommes,et al.  “Period three to period two” bifurcation for piecewise linear models , 1991 .

[22]  Leigh Tesfatsion,et al.  Agent-Based Computational Economics: Growing Economies From the Bottom Up , 2002, Artificial Life.

[23]  Michael Schanz,et al.  Border-Collision bifurcations in 1D Piecewise-Linear Maps and Leonov's Approach , 2010, Int. J. Bifurc. Chaos.

[24]  J. Farmer,et al.  The price dynamics of common trading strategies , 2000, cond-mat/0012419.

[25]  U. Chatterjee,et al.  Effect of unconventional feeds on production cost, growth performance and expression of quantitative genes in growing pigs , 2022, Journal of the Indonesian Tropical Animal Agriculture.

[26]  Rosario N. Mantegna,et al.  An Introduction to Econophysics: Contents , 1999 .

[27]  Thomas Lux,et al.  Stochastic behavioral asset pricing models and the stylized facts , 2008 .

[28]  M. Marchesi,et al.  Scaling and criticality in a stochastic multi-agent model of a financial market , 1999, Nature.

[29]  Ekaterina Pavlovskaia,et al.  Experimental study of impact oscillator with one-sided elastic constraint , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[30]  Frank Westerhoff,et al.  MULTIASSET MARKET DYNAMICS , 2004, Macroeconomic Dynamics.

[31]  C. Budd,et al.  Review of ”Piecewise-Smooth Dynamical Systems: Theory and Applications by M. di Bernardo, C. Budd, A. Champneys and P. 2008” , 2020 .

[32]  F. Westerhoff,et al.  Structural stochastic volatility in asset pricing dynamics: Estimation and model contest , 2012 .

[33]  Richard H. Day,et al.  Complex Dynamics, Market Mediation and Stock Price Behavior , 1997 .

[34]  L. Gardini,et al.  Heterogeneous Speculators and Asset Price Dynamics: Further Results from a One-Dimensional Discontinuous Piecewise-Linear Map , 2011 .

[35]  Xue-Zhong He,et al.  Power-law behaviour, heterogeneity, and trend chasing , 2007 .

[36]  Laura Gardini,et al.  Degenerate bifurcations and Border Collisions in Piecewise Smooth 1D and 2D Maps , 2010, Int. J. Bifurc. Chaos.

[37]  Guanrong Chen,et al.  Chaos-Based Encryption for Digital Images and Videos , 2004 .

[38]  W. Brock,et al.  Heterogeneous beliefs and routes to chaos in a simple asset pricing model , 1998 .

[39]  H. Krieger,et al.  Complex dynamics , 2012, Veterinary Record.

[40]  Mario di Bernardo,et al.  Canonical Forms of Generic Piecewise Linear Continuous Systems , 2011, IEEE Transactions on Automatic Control.

[41]  Frank Westerhoff,et al.  Exchange Rate Dynamics: A Nonlinear Survey , 2009 .

[42]  Richard H. Day,et al.  Bulls, bears and market sheep , 1990 .

[43]  Cars H. Hommes,et al.  A reconsideration of Hicks' non-linear trade cycle model , 1995 .

[44]  Klaus Reiner Schenk-Hoppé,et al.  Handbook of Financial Markets: Dynamics and Evolution , 2009 .

[45]  J. Rosser Handbook of Research on Complexity , 2011 .

[46]  P. S. Ward ANTS , 1889, Science.

[47]  Sebastiano Manzan,et al.  Behavioral Heterogeneity in Stock Prices , 2005 .

[48]  Laura Gardini,et al.  One-dimensional maps with two discontinuity points and three linear branches: mathematical lessons for understanding the dynamics of financial markets , 2014 .

[49]  Ping Chen,et al.  Nonlinear dynamics and evolutionary economics , 1993 .

[50]  Richard H. Day,et al.  Statistical Dynamics and Economics , 1991 .

[51]  Celso Grebogi,et al.  Two-dimensional map for impact oscillator with drift. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[52]  Volker Böhm,et al.  Differential savings, factor shares, and endogenous growth cycles , 2000 .

[53]  Carl Chiarella,et al.  The dynamics of speculative behaviour , 1992, Ann. Oper. Res..

[54]  Laura Gardini,et al.  Cournot duopoly when the competitors operate multiple production plants , 2009 .

[55]  C. Hommes Heterogeneous Agent Models in Economics and Finance , 2005 .

[56]  V. V. Fedorenko,et al.  Dynamics of One-Dimensional Maps , 1997 .

[57]  R. Cont Empirical properties of asset returns: stylized facts and statistical issues , 2001 .

[58]  C. Hommes Chapter 23 Heterogeneous Agent Models in Economics and Finance , 2006 .

[59]  R. Palmer,et al.  Time series properties of an artificial stock market , 1999 .

[60]  G. Verghese,et al.  Nonlinear phenomena in power electronics : attractors, bifurcations, chaos, and nonlinear control , 2001 .

[61]  Erik Mosekilde,et al.  Bifurcations and chaos in piecewise-smooth dynamical systems , 2003 .

[62]  P. Dutta,et al.  Torus destruction in a nonsmooth noninvertible map , 2012 .

[63]  T. Lux Herd Behaviour, Bubbles and Crashes , 1995 .

[64]  Mark P. Taylor,et al.  The Obstinate Passion of Foreign Exchange Professionals: Technical Analysis , 2007 .

[65]  Soumitro Banerjee,et al.  Local and Global bifurcations in Three-Dimensional, Continuous, Piecewise Smooth Maps , 2011, Int. J. Bifurc. Chaos.

[66]  Laura Gardini,et al.  BISTABILITY AND BORDER-COLLISION BIFURCATIONS FOR A FAMILY OF UNIMODAL PIECEWISE SMOOTH MAPS , 2005 .

[67]  L. P. L. D. Oliveira,et al.  Cryptography with chaotic mixing , 2008 .

[68]  Laura Gardini,et al.  On the complicated price dynamics of a simple one-dimensional discontinuous financial market model with heterogeneous interacting traders , 2010 .

[69]  Ott,et al.  Border-collision bifurcations: An explanation for observed bifurcation phenomena. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[70]  Character of the map for switched dynamical systems for observations on the switching manifold , 2008 .

[71]  F. Westerhoff,et al.  Converse trading strategies, intrinsic noise and the stylized facts of financial markets , 2012 .

[72]  B. LeBaron Agent-based Computational Finance , 2006 .

[73]  Mario di Bernardo,et al.  C-bifurcations and period-adding in one-dimensional piecewise-smooth maps , 2003 .

[74]  Celso Grebogi,et al.  Border collision bifurcations in two-dimensional piecewise smooth maps , 1998, chao-dyn/9808016.

[75]  H. Visser Exchange rate theories , 1989 .

[76]  R. Day Irregular Growth Cycles , 2016 .

[77]  M. Ausloos,et al.  Market Fluctuations I: Scaling, Multiscaling, and Their Possible Origins , 2002 .

[78]  Leon O. Chua,et al.  Cycles of Chaotic Intervals in a Time-delayed Chua's Circuit , 1993, Chua's Circuit.

[79]  Xue-Zhong He,et al.  Heterogeneity, convergence, and autocorrelations , 2008 .

[80]  Florian Wagener,et al.  Complex Evolutionary Systems in Behavioral Finance , 2008 .

[81]  Ekaterina Pavlovskaia,et al.  Low-dimensional maps for piecewise smooth oscillators , 2007 .

[82]  M. Embrechts,et al.  Exchange Rate Theory: Chaotic Models of Foreign Exchange Markets , 1993 .

[83]  James A. Yorke,et al.  Border-collision bifurcations including “period two to period three” for piecewise smooth systems , 1992 .

[84]  Financial Crisis and Interacting Heterogeneous Agents , 2009 .

[85]  Alan Kirman,et al.  Ants, Rationality, and Recruitment , 1993 .

[86]  J. Keener Chaotic behavior in piecewise continuous difference equations , 1980 .

[87]  Roberto Dieci,et al.  The effectiveness of Keynes-Tobin transaction taxes when heterogeneous agents can trade in different markets: A behavioral finance approach , 2006 .

[88]  “Complex Dynamics, Market Mediation and Stock Price Behavior”, Richard H. Day, July 1997 , 1997 .