Unified computational framework for the efficient solution of n-field coupled problems with monolithic schemes

Abstract In this paper, we propose and evaluate the performance of a unified computational framework for preconditioning systems of linear equations resulting from the solution of coupled problems with monolithic schemes. The framework is composed by promising application-specific preconditioners presented previously in the literature with the common feature that they are able to be implemented for a generic coupled problem, involving an arbitrary number of fields, and to be used to solve a variety of applications. The first selected preconditioner is based on a generic block Gauss–Seidel iteration for uncoupling the fields, and standard algebraic multigrid (AMG) methods for solving the resulting uncoupled problems. The second preconditioner is based on the semi-implicit method for pressure-linked equations (SIMPLE) which is extended here to deal with an arbitrary number of fields, and also results in uncoupled problems that can be solved with standard AMG. Finally, a more sophisticated preconditioner is considered which enforces the coupling at all AMG levels, in contrast to the other two techniques which resolve the coupling only at the finest level. Our purpose is to show that these methods perform satisfactory in quite different scenarios apart from their original applications. To this end, we consider three very different coupled problems: thermo-structure interaction, fluid–structure interaction and a complex model of the human lung. Numerical results show that these general purpose methods are efficient and scalable in this range of applications.

[1]  W. Wall,et al.  Truly monolithic algebraic multigrid for fluid–structure interaction , 2011 .

[2]  Edmond Chow,et al.  An object-oriented framework for block preconditioning , 1998, TOMS.

[3]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[4]  Jonathan J. Hu,et al.  ML 5.0 Smoothed Aggregation Users's Guide , 2006 .

[5]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[6]  P. Wesseling,et al.  Geometric multigrid with applications to computational fluid dynamics , 2001 .

[7]  Christian J. Roth,et al.  Fluid‐structure interaction including volumetric coupling with homogenised subdomains for modeling respiratory mechanics , 2017, International journal for numerical methods in biomedical engineering.

[8]  Michael A. Heroux AztecOO user guide. , 2004 .

[9]  Matthew G. Knepley,et al.  Composable Linear Solvers for Multiphysics , 2012, 2012 11th International Symposium on Parallel and Distributed Computing.

[10]  Fabio Nobile,et al.  Added-mass effect in the design of partitioned algorithms for fluid-structure problems , 2005 .

[11]  M. Heil An efficient solver for the fully-coupled solution of large-displacement fluid-structure interaction problems , 2004 .

[12]  Jean-Frédéric Gerbeau,et al.  A Quasi-Newton Algorithm Based on a Reduced Model for Fluid-Structure Interaction Problems in Blood Flows , 2003 .

[13]  Charbel Farhat,et al.  An unconditionally stable staggered algorithm for transient finite element analysis of coupled thermoelastic problems , 1991 .

[14]  John N. Shadid,et al.  A taxonomy and comparison of parallel block multi-level preconditioners for the incompressible Navier-Stokes equations , 2008, J. Comput. Phys..

[15]  Charbel Farhat,et al.  Partitioned analysis of coupled mechanical systems , 2001 .

[16]  Santiago Badia,et al.  Block recursive LU preconditioners for the thermally coupled incompressible inductionless MHD problem , 2014, J. Comput. Phys..

[17]  J. P. V. Doormaal,et al.  ENHANCEMENTS OF THE SIMPLE METHOD FOR PREDICTING INCOMPRESSIBLE FLUID FLOWS , 1984 .

[18]  Alexander Düster,et al.  Accelerated staggered coupling schemes for problems of thermoelasticity at finite strains , 2012, Comput. Math. Appl..

[19]  Paolo Crosetto,et al.  Parallel Algorithms for Fluid-Structure Interaction Problems in Haemodynamics , 2011, SIAM J. Sci. Comput..

[20]  Annalisa Quaini,et al.  Modular vs. non-modular preconditioners for fluid-structure systems with large added-mass effect , 2008 .

[21]  Ekkehard Ramm,et al.  On the geometric conservation law in transient flow calculations on deforming domains , 2006 .

[22]  Toshiro Matsumoto,et al.  Application of boundary element method to 3-D problems of coupled thermoelasticity , 1995 .

[23]  Wolfgang A. Wall,et al.  Bridging Scales in Respiratory Mechanics , 2013 .

[24]  Wolfgang A. Wall,et al.  A monolithic computational approach to thermo‐structure interaction , 2013 .

[25]  W. Wall,et al.  Fixed-point fluid–structure interaction solvers with dynamic relaxation , 2008 .

[26]  Michael A. Heroux,et al.  ROBUST ALGEBRAIC PRECONDITIONERS USING IFPACK 3.0. , 2005 .

[27]  John N. Shadid,et al.  Stabilization and scalable block preconditioning for the Navier-Stokes equations , 2012, J. Comput. Phys..

[28]  Paul Lin,et al.  A parallel fully coupled algebraic multilevel preconditioner applied to multiphysics PDE applications: Drift‐diffusion, flow/transport/reaction, resistive MHD , 2010 .

[29]  John N. Shadid,et al.  Teko: A Block Preconditioning Capability with Concrete Example Applications in Navier-Stokes and MHD , 2016, SIAM J. Sci. Comput..

[30]  Marian Brezina,et al.  Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems , 2005, Computing.

[31]  Brian Brennan,et al.  Playa: High-performance programmable linear algebra , 2012 .

[32]  Robert C. Kirby,et al.  Block preconditioners for finite element discretization of incompressible flow with thermal convection , 2012, Numer. Linear Algebra Appl..

[33]  Philipp Birken,et al.  Numerical Linear Algebra , 2011, Encyclopedia of Parallel Computing.

[34]  Christian Miehe,et al.  Entropic thermoelasticity at finite strains. Aspects of the formulation and numerical implementation , 1995 .

[35]  William L. Briggs,et al.  A multigrid tutorial, Second Edition , 2000 .

[36]  John N. Shadid,et al.  A Block Preconditioner for an Exact Penalty Formulation for Stationary MHD , 2014, SIAM J. Sci. Comput..

[37]  Owe Axelsson,et al.  A general approach to analyse preconditioners for two-by-two block matrices , 2013, Numer. Linear Algebra Appl..

[38]  Francisco Armero,et al.  A new unconditionally stable fractional step method for non‐linear coupled thermomechanical problems , 1992 .

[39]  Michael A. Heroux,et al.  On the design of interfaces to sparse direct solvers , 2008, TOMS.

[40]  Jörg Liesen,et al.  Convergence analysis of Krylov subspace methods , 2004 .

[41]  Marian Brezina,et al.  Convergence of algebraic multigrid based on smoothed aggregation , 1998, Numerische Mathematik.

[42]  Steven M. Arnold,et al.  Viscoplastic Analysis of an Experimental Cylindrical Thrust Chamber Liner , 1992 .

[43]  T. Ginsburg The conjugate gradient method , 1963 .

[44]  W A Wall,et al.  Material model of lung parenchyma based on living precision-cut lung slice testing. , 2011, Journal of the mechanical behavior of biomedical materials.

[45]  Paul Lin,et al.  Performance of fully coupled algebraic multilevel domain decomposition preconditioners for incompressible flow and transport , 2006 .

[46]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[47]  Paul T. Lin,et al.  Performance of a parallel algebraic multilevel preconditioner for stabilized finite element semiconductor device modeling , 2009, J. Comput. Phys..

[48]  A. D. Gosman,et al.  Two calculation procedures for steady, three-dimensional flows with recirculation , 1973 .

[49]  Ray S. Tuminaro,et al.  A New Petrov--Galerkin Smoothed Aggregation Preconditioner for Nonsymmetric Linear Systems , 2008, SIAM J. Sci. Comput..

[50]  Matthias Mayr,et al.  A Temporal Consistent Monolithic Approach to Fluid-Structure Interaction Enabling Single Field Predictors , 2015, SIAM J. Sci. Comput..

[51]  John N. Shadid,et al.  A New Approximate Block Factorization Preconditioner for Two-Dimensional Incompressible (Reduced) Resistive MHD , 2013, SIAM J. Sci. Comput..

[52]  Robert C. Kirby,et al.  Block Preconditioners for Coupled Physics Problems , 2013, SIAM J. Sci. Comput..

[53]  E. Ramm,et al.  Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows , 2007 .

[54]  Michael A. Heroux,et al.  Amesos: A Set of General Interfaces to Sparse Direct Solver Libraries , 2006, PARA.

[55]  Wolfgang A. Wall,et al.  Coupling strategies for biomedical fluid–structure interaction problems , 2010 .

[56]  J. Boyle,et al.  Solvers for large-displacement fluid–structure interaction problems: segregated versus monolithic approaches , 2008 .